Abstract
To determine the role of the Wilms' tumor gene WT1 in tumorigenesis of solid tumors, expression of the WT1 gene was examined in 34 solid tumor cell lines (four gastric cancer cell lines, five colon cancer cell lines, 15 lung cancer cell lines, four breast cancer cell lines, one germ cell tumor cell line, two ovarian cancer cell lines, one uterine cancer cell line, one thyroid cancer cell line, and one hepatocellular carcinoma cell line) by means of quantitative reverse transcriptase‐polymerase chain reaction. WT1 gene expression was detected in three of the four gastric cancer cell lines, all of the five colon cancer cell lines, 12 of the 15 lung cancer cell lines, two of the four breast cancer cell lines, the germ cell tumor cell line, the two ovarian cancer cell lines, the uterine cancer cell line, the thyroid cancer cell line, and the hepatocellular carcinoma cell line. Therefore, of the 34 solid tumor cell lines examined, 28 (82%) expressed WT1. Three cell lines expressing WT1 (gastric cancer cell line AZ‐521, lung cancer cell line OS3, and ovarian cancer cell line TYK‐nu) were further analyzed for mutations and/or deletions in the WT1 gene by means of single‐strand conformation polymorphism analysis. However, no mutations or deletions were detected in the region of the WT1 gene ranging from the 3/end of exon 1 to exon 10 (the WT1 gene consists of 10 exons) in these three cell lines. Furthermore, when AZ‐521, OS3, and TYK‐nu cells were treated with WT1 antisense oligomers, the growth of these cells was significantly inhibited in association with a reduction in WT1 protein levels. Furthermore, constitutive expression of the transfected WT1 gene in cancer cells inhibited the antisense effect of WT1 antisense oligomer on cell growth. These results indicated that the WT1 gene plays an essential role in the growth of solid tumors and performs an oncogenic rather than a tumor‐suppressor gene function.
Keywords: Wilms' tumor gene, WT1, Tumor suppressor gene, Solid tumors
Full Text
The Full Text of this article is available as a PDF (249.5 KB).
REFERENCES
- 1. ) Call , K. M. , Glaser , T. , Ito , C. Y. , Buckler , A. J. , Pelletier , J. , Haber , D. A. , Rose , E. A. , Kral , A. , Yeger , H. , Lewis , W. H. , Jones , C. and Housman , D. E.Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus . Cell , 60 , 509 – 520 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Gessler , M. , Poustka , A. , Cavenee , W. , Neve , R. L. , Orkin , S. H. and Bruns , G. A. P.Homozygous deletion in Wilms tumours of a zinc‐finger gene identified by chromosome jumping . Nature , 343 , 774 – 778 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Gashler , A. L. , Bonthron , D. T. , Madden , S. L. , Rauscher , F. J. , III , Collins , T. and Sukhatme , V. P.Human platelet‐derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1 . Proc. Natl. Acad. Sci. USA , 89 , 10984 – 10988 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. ) Harrington , M. A. , Konicek , B. , Song , A. , Xia , X.‐L. , Fredericks , W. J. and Rauscher , F. J. , IIIInhibition of colony‐stimulating factor‐1 promoter activity by the product of the Wilms' tumor locus . J. Biol. Chem. , 268 , 21271 – 21275 ( 1993. ). [PubMed] [Google Scholar]
- 5. ) Drummond , I. A. , Madden , S. L. , Rohwer‐Nutter , P. , Bell , G. I. , Sukhatme , V. P. and Rauscher , F. J. , IIIRepression of the insulin‐like growth factor II gene by the Wilms tumor suppressor WT1 . Science , 257 , 674 – 678 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Werner , H. , Re , G. G. , Drummond , I. A. , Sukhatme , V. P. , Rauscher , F. J. , III , Sens , D. A. , Garvin , A. J. , LeRoith , D. and Roberts , C. T. , Jr.Increased expression of the insulin‐like growth factor I receptor gene, IGFIR, in Wilms tumor is correlated with modulation of IGFIR promoter activity by the WT1 Wilms tumor gene product . Proc. Natl. Acad. Sci. USA , 90 , 5828 – 5832 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. ) Godyer , P. , Dehbi , M. , Torban , E. , Bruening , W. and Pelletier , J.Repression of the retinoic acid receptor‐αgene by the Wilms tumor suppressor gene product, wtl . Oncogene , 10 , 1125 – 1129 ( 1995. ). [PubMed] [Google Scholar]
- 8. ) Hewitt , S. M. , Hamada , S. , McDonnell , T. J. , Rauscher , F. J. , III and Saunders , G. F.Regulation of the proto‐oncogenes bcl‐2 and c‐myc by the Wilms' tumor suppressor gene WT1 . Cancer Res. , 55 , 5386 – 5389 ( 1995. ). [PubMed] [Google Scholar]
- 9. ) Inoue , K. , Sugiyama , H. , Ogawa , H. , Nakagawa , M. , Yamagami , T. , Miwa , H. , Kita , K. , Hiraoka , A. , Masaoka , T. , Nasu , K. , Kyo , T. , Dohy , H. , Nakauchi , H. , Ishidate , T. , Akiyama , T. and Kishimoto , T.WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia . Blood , 84 , 3071 – 3079 ( 1994. ). [PubMed] [Google Scholar]
- 10. ) Tamaki , H. , Ogawa , H. , Inoue , K. , Soma , T. , Yamagami , T. , Miyake , S. , Oka , Y. , Oji , Y. , Tatekawa , T. , Tsuboi , A. , Tagawa , S. , Kitani , T. , Miwa , H. , Kita , K. , Aozasa , K. , Kishimoto , T. and Sugiyama , H.Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia . Blood , 88 , 4396 – 4399 ( 1996. ). [PubMed] [Google Scholar]
- 11. ) Yamagami , T. , Sugiyama , H. , Inoue , K. , Ogawa , H. , Tatekawa , T. , Hirata , M. , Kudoh , T. , Akiyama , T. , Murakami , A. , Maekawa , T. and Kishimoto , T.Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis . Blood , 87 , 2878 – 2884 ( 1996. ). [PubMed] [Google Scholar]
- 12. ) Inoue , K. , Tamaki , H. , Ogawa , H. , Oka , Y. , Soma , T. , Tatekawa , T. , Oji , Y. , Tsuboi , A. , Kim , E. H. , Kawakami , M. , Akiyama , T. , Kishimoto , T. and Sugiyama , H.Wilms' tumor gene (WT1) competes with differentiation‐inducing signal in hematopoietic progenitor cells . Blood , 91 , 2969 – 2976 ( 1998. ). [PubMed] [Google Scholar]
- 13. ) Bruening , W. , Gros , P. , Sato , T. , Stanimir , J. , Nakamura , Y. , Housman , D. and Pelletier , J.Analysis of the 11p13 Wilms' tumor suppressor gene (WT1) in ovarian tumors . Cancer Invest. , 11 , 393 – 399 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Coppes , M. J. , Ye , Y. , Rackley , R. , Zhao , X.‐L. , Liefers , G. J. , Casey , G. and Williams , B. R. G.Analysis of WT1 in granulosa cell and other sex cord‐stromal tumors . Cancer Res. , 53 , 2712 – 2714 ( 1993. ). [PubMed] [Google Scholar]
- 15. ) Park , S. , Schalling , M. , Bernard , A. , Maheswaran , S. , Shipley , G. C. , Roberts , D. , Fletcher , J. , Shipman , R. , Rheinwald , J. , Demetri , G. , Griffin , J. , Minden , M. , Housman , D. E. and Haber , D. A.The Wilms tumour gene WT1 is expressed in murine mesoderm‐derived tissues and mutated in a human mesothelioma . Nat. Genet. , 4 , 415 – 420 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Amin , K. M. , Litzky , L. A. , Smythe , W. R. , Mooney , A. M. , Morris , J. M. , Mews , D. J. Y. , Pass , H. I. , Kari , C. , Rodeck , U. , Rauscher , F. J. , III , Kaiser , L. R. and Albelda , S. M.Wilms' tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant methothelioma . Am. J. Pathol. , 146 , 344 – 356 ( 1995. ). [PMC free article] [PubMed] [Google Scholar]
- 17. ) Silberstein , G. B. , Van Horn , K. , Strickland , P. , Roberts , C. T. , Jr. , and Daniel , C. W.Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer . Proc. Natl. Acad. Sci. USA , 94 , 8132 – 8137 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. ) Haber , D. A. , Park , S. , Maheswaran , S. , Englert , C. , Re , G. G. , Hazen‐Martin , D. J. , Sens , D. A. and Garvin , A. J.WT1‐mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant . Science , 262 , 2057 – 2059 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Luo , X.‐N. , Reddy , J. C. , Yeyati , P. L. , Idris , A. H. , Hosono , S. , Haber , D. A. , Licht , J. D. and Atweh , G. F.The tumor suppressor gene WT1 inhibits ras‐mediated transformation . Oncogene , 11 , 743 – 750 ( 1995. ). [PubMed] [Google Scholar]
- 20. ) Menke , A. L. , Riteco , N. , Van Ham , R. C. A. , De Bruyne , C. , Rauscher , F. J. , III , Van der Eb , A. J. and Jochemsen , A. G.Wilms' tumor 1 splice variants have opposite effects on the tumorigenicity of adenovirus‐transformed baby‐rat kidney cells . Oncogene , 12 , 537 – 546 ( 1996. ). [PubMed] [Google Scholar]
- 21. ) Maheswaran , S. , Park , S. , Bernard , A. , Morris , J. F. , Rauscher , F. J. , III , Hill , D. E. and Haber , D. A.Physical and functional interaction between WT1 and p53 proteins . Proc. Natl. Acad. Sci. USA , 90 , 5100 – 5104 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. ) Johnstone , R. W. , See , R. H. , Sells , S. F. , Wang , J. , Muthukkumar , S. , Englert , C. , Haber , D. A. , Licht , J. D. , Sugrue , S. P. , Roberts , T. , Rangnekar , V. M. and Shi , Y.A novel repressor, par‐4, modulates transcription and growth suppression functions of the Wilms' tumor suppressor WT1 . Mol. Cell. Biol. , 16 , 6945 – 6956 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. ) Sekiya , M. , Adachi , M. , Hinoda , Y. , Imai , K. and Yachi , A.Downregulation of Wilms' tumor gene (wt1) during myelomonocytic differentiation in HL60 cells . Blood , 83 , 1876 – 1882 ( 1994. ). [PubMed] [Google Scholar]
- 24. ) Phelan , S. A. , Lindberg , C. and Call , K. M.Wilms' tumor gene, WT1, mRNA is down‐regulated during induction of erythroid and megakaryocytic differentiation of K562 cells . Cell Growth Diff. , 5 , 677 – 686 ( 1994. ). [PubMed] [Google Scholar]
- 25. ) Inoue , K. , Ogawa , H. , Sonoda , Y. , Kimura , T. , Sakabe , H. , Oka , Y. , Miyake , S. , Tamaki , H. , Oji , Y. , Yamagami , T. , Tatekawa , T. , Soma , T. , Kishimoto , T. and Sugiyama , H.Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia . Blood , 89 , 1405 – 1412 ( 1997. ). [PubMed] [Google Scholar]
- 26. ) Menssen , H. D. , Renkl , H.‐J. , Entezami , M. and Thiel , E.Wilms' tumor gene expression in human CD34+hematopoietic progenitors during development and early clonogenic growth . Blood , 89 , 3486 – 3493 ( 1997. ). [PubMed] [Google Scholar]
- 27. ) Baird , P. N. and Simmons , P. J.Expression of the Wilms' tumor gene (WT1) in normal hemopoiesis . Exp. Hematol. , 25 , 312 – 320 ( 1997. ). [PubMed] [Google Scholar]
- 28. ) Maurer , U. , Brieger , J. , Weidmann , E. and Mitrou , P. S.The Wilms' tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro . Exp. Hematol , 25 , 945 – 950 ( 1997. ). [PubMed] [Google Scholar]
- 29. ) Kamei , H.Nuclear granules recognized by some monoclonal antibody against intermediate filament protein locate on chromosomes during mitosis . Cell Biol. Int. Rep. , 13 , 291 – 299 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 30. ) Hojo , H.Establishment of cultured cell line of human stomach cancer origin and their morphological characteristics . Niigata Med. J. , 91 , 737 – 752 ( 1977. ). [Google Scholar]
- 31. ) Motoyama , T. , Hojo , H. and Watanabe , H.Comparison of seven cell lines derived from human gastric carcinomas . Acta Pathol. Jpn. , 36 , 65 – 83 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 32. ) Nozue , M. , Nishida , M. , Todoroki , T. and Iwasaki , Y.Establishment and characterization of a human scirrhous type gastric cancer cell line, GCIY, producing CA19–9 . Hum. Cell , 4 , 71 – 75 ( 1991. ). [PubMed] [Google Scholar]
- 33. ) Leibovitz , A. , Stinson , J. C. , McCombs , W. B. , III , McCoy , C. E. , Mazur , K. C. and Mabry , N. D.Classification of human colorectal adenocarcinoma cell lines . Cancer Res. , 36 , 4562 – 4569 ( 1976. ). [PubMed] [Google Scholar]
- 34. ) Quinn , L. A. , Moore , G. E. , Morgan , R. T. and Woods , L. K.Cell lines from human colon carcinoma with unusual cell products, double minutes, and homogeneously staining regions . Cancer Res. , 39 , 4914 – 4924 ( 1979. ). [PubMed] [Google Scholar]
- 35. ) Drewinko , B. , Romsdahl , M. M. , Yang , L. Y. , Ahearn , M. J. and Trujillo , J. M.Establishment of a human carcinoembryonic antigen‐producing colon adenocarcinoma cell line . Cancer Res. , 36 , 467 – 475 ( 1976. ). [PubMed] [Google Scholar]
- 36. ) von Kleist , S. , Chany , E. , Burtin , P. , King , M. and Fogh , J.Immunohistology of the antigenic pattern of a continuous cell line from a human colon tumor . J. Natl. Cancer Inst. , 55 , 555 – 560 ( 1975. ). [DOI] [PubMed] [Google Scholar]
- 37. ) Miyazaki , K. , Takaku , H. , Umeda , M. , Fujita , T. , Huang , W. , Kimura , T. , Yamashita , J. and Horio , T.Potent growth inhibition of human tumor cells in culture by arginine deaminase purified from a culture medium of a mycoplasma‐infected cell line . Cancer Res. , 50 , 4522 – 4527 ( 1990. ). [PubMed] [Google Scholar]
- 38. ) Tanio , Y. , Watanabe , M. , Inoue , T. , Kawase , I. , Shirasaka , T. , Ikeda , T. , Hara , H. , Masuno , T. , Saito , S. , Kawano , K. , Kitamura , H. , Kubota , K. , Kodama , N. , Kawahara , M. , Sakatani , M. , Furuse , K. , Yamamoto , S. and Kishimoto , S.Chemo‐radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy . Jpn. J. Cancer Res. , 81 , 289 – 297 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. ) Kyoizumi , S. , Akiyama , M. , Kouno , N. , Kobuke , K. , Hakoda , M. , Jones , S. L. and Yamakido , M.Monoclonal antibodies to human squamous cell carcinoma of the lung and their application to tumor diagnosis . Cancer Res. , 45 , 3274 – 3281 ( 1985. ). [PubMed] [Google Scholar]
- 40. ) Sakuma , T. , Kodama , K. , Hara , T. , Eshita , Y. , Shibata , N. , Matsumoto , M. , Seya , T. and Mori , Y.Levels of complement regulatory molecules in lung cancer: disappearance of the D17 epitope of CD55 in small‐cell carcinoma . Jpn. J. Cancer Res. , 84 , 753 – 759 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. ) Mogi , H. , Hasegawa , Y. , Watanabe , A. , Nomura , F. , Saka , H. and Shimokata , K.Combination effects of cisplatin, vinorelbine and irinotecan in non‐small‐cell lung cancer cell lines in vitro . Cancer Chemother. Pharmacol , 39 , 199 – 204 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 42. ) Suzuki , K. , Ota , H. , Hirohashi , S. , Taya , Y. , Shimosato , Y. , Kuramoto , A. and Fujikura , T.Chemotactic factor for polymorphonuclear leukocytes derived from human lung giant cell carcinoma Lu65 cells . J. Clin. Biochem. Nutr. , 6 , 147 – 153 ( 1989. ). [Google Scholar]
- 43. ) Itoh , H. , Kataoka , H. , Koita , H. , Nabeshima , K. , Inoue , T. , Kangawa , K. and Koono , M.Establishment of a new human cancer cell line secreting protease nexin‐II/amyloid beta protein precursor derived from squamous‐cell carcinoma of lung . Int. J. Cancer , 49 , 436 – 443 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 44. ) Kataoka , H. , Itoh , H. , Seguchi , K. and Koono , M.Establishment and characterization of a human lung adenocarcinoma cell line (LC‐2/ad) producing alpha 1–antitrypsin in vitro . Acta Pathol. Jpn. , 43 , 566 – 573 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 45. ) Lee , Y.‐C. , Saijo , N. , Sasaki , Y. , Takahashi , H. , Sakurai , M. , Ishihara , J. , Hoshi , A. , Chen , K.‐M. and Hamburger , A. W.Clonogenic patterns of human pulmonary adenocarcinoma cell lines (PC‐9, PC‐13 and PC‐14) and how they influence the results of test for chemosensitivity to cisplatin in the human tumor clonogenic assay . Jpn. J. Clin. Oncol. , 15 , 637 – 644 ( 1985. ). [PubMed] [Google Scholar]
- 46. ) Yamane , M. , Nishiki , M. , Kataoka , T. , Kishi , N. , Amano , K. , Nakagawa , K. , Okumichi , T. , Naito , M. , Ito , A. and Ezaki , H.Establishment and characterization of new cell line (YMB‐1) derived from human breast carcinoma . Hiroshima J. Med. Sci. , 33 , 715 – 720 ( 1984. ). [PubMed] [Google Scholar]
- 47. ) Cailleau , R. , Young , R. , Olivé , M. and Reeves , W. L. , Jr.Breast tumor cell lines from pleural effusions . J. Natl. Cancer Inst. , 53 , 661 – 674 ( 1974. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. ) Keydar , I. , Chen , L. , Karbey , S. , Weiss , F. R. , Declarca , J. , Radu , M. , Chaitcik , S. and Brenner , M. J.Establishment and characterization of a cell line of human breast carcinoma origin . Eur. J. Cancer , 15 , 659 – 670 ( 1979. ). [DOI] [PubMed] [Google Scholar]
- 49. ) Engel , L. W. , Young , N. A. , Tralka , T. S. , Lippman , M. E. , O'Brien , S. J. and Joyce , M. J.Establishment and characterization of three new continuous cell lines derived from human breast carcinomas . Cancer Res. , 38 , 3352 – 3364 ( 1978. ). [PubMed] [Google Scholar]
- 50. ) Motoyama , T. , Watanabe , H. , Yamamoto , T. and Sekiguchi , M.Human testicular germ cell tumors in vitro and in athymic nude mice . Acta Pathol. Jpn. , 37 , 431 – 448 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 51. ) Yoshiya , N.Establishment of a cell line from human ovarian cancer (undifferentiated carcinoma of FIGO classification) and analysis of its cell‐biological characteristics and sensitivity to anticancer drugs . Acta Obstet. Gynaecol. Jpn. , 38 , 1747 – 1753 ( 1986. ). [PubMed] [Google Scholar]
- 52. ) Scherer , W. F. and Hoogasian , A. C.Preservation at subzero temperatures of mouse fibroblasts (Strain L) and human epithelial cells (Strain HeLa) . Proc. Soc. Exp. Biol. Med. , 87 , 480 – 487 ( 1954. ). [DOI] [PubMed] [Google Scholar]
- 53. ) Ito , T. , Seyama , T. , Hayashi , T. , Dohi , K. , Mizuno , T. , Iwamoto , K. , Tsuyama , N. , Nakamura , N. and Akiyama , M.Establishment of two human thyroid carcinoma cell lines (8305C, 8505C) bearing p53 gene mutations . Int. J. Oncol. , 4 , 583 – 586 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 54. ) Aden , D. P. , Fogel , A. , Plotkin , S. , Damjanov , I. and Knowles , B. B.Controlled synthesis of HBsAg in a differentiated human liver carcinoma‐derived cell line . Nature , 282 , 615 – 616 ( 1979. ). [DOI] [PubMed] [Google Scholar]