Abstract
Glucocorticoid-induced bone disease is characterized by decreased bone formation and in situ death of isolated segments of bone (osteonecrosis) suggesting that glucocorticoid excess, the third most common cause of osteoporosis, may affect the birth or death rate of bone cells, thus reducing their numbers. To test this hypothesis, we administered prednisolone to 7-mo-old mice for 27 d and found decreased bone density, serum osteocalcin, and cancellous bone area along with trabecular narrowing. These changes were accompanied by diminished bone formation and turnover, as determined by histomorphometric analysis of tetracycline-labeled vertebrae, and impaired osteoblastogenesis and osteoclastogenesis, as determined by ex vivo bone marrow cell cultures. In addition, the mice exhibited a threefold increase in osteoblast apoptosis in vertebrae and showed apoptosis in 28% of the osteocytes in metaphyseal cortical bone. As in mice, an increase in osteoblast and osteocyte apoptosis was documented in patients with glucocorticoid-induced osteoporosis. Decreased production of osteoclasts explains the reduction in bone turnover, whereas decreased production and apoptosis of osteoblasts would account for the decline in bone formation and trabecular width. Furthermore, accumulation of apoptotic osteocytes may contribute to osteonecrosis. These findings provide evidence that glucocorticoid-induced bone disease arises from changes in the numbers of bone cells.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarden E. M., Burger E. H., Nijweide P. J. Function of osteocytes in bone. J Cell Biochem. 1994 Jul;55(3):287–299. doi: 10.1002/jcb.240550304. [DOI] [PubMed] [Google Scholar]
- Bellows C. G., Aubin J. E., Heersche J. N. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 1991 Jul;14(1):27–40. doi: 10.1016/0169-6009(91)90100-e. [DOI] [PubMed] [Google Scholar]
- Bellows C. G., Aubin J. E., Heersche J. N. Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvaria cells in vitro. Endocrinology. 1987 Dec;121(6):1985–1992. doi: 10.1210/endo-121-6-1985. [DOI] [PubMed] [Google Scholar]
- Broulik P. D., Stárka L. Effect of antiandrogens casodex and epitestosterone on bone composition in mice. Bone. 1997 May;20(5):473–475. doi: 10.1016/s8756-3282(97)00012-4. [DOI] [PubMed] [Google Scholar]
- Bursch W., Paffe S., Putz B., Barthel G., Schulte-Hermann R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis. 1990 May;11(5):847–853. doi: 10.1093/carcin/11.5.847. [DOI] [PubMed] [Google Scholar]
- Chavassieux P., Buffet A., Vergnaud P., Garnero P., Meunier P. J. Short-term effects of corticosteroids on trabecular bone remodeling in old ewes. Bone. 1997 May;20(5):451–455. doi: 10.1016/s8756-3282(97)00016-1. [DOI] [PubMed] [Google Scholar]
- Cline M. J. Editorial: Drugs and phagocytes. N Engl J Med. 1974 Nov 28;291(22):1187–1188. doi: 10.1056/NEJM197411282912211. [DOI] [PubMed] [Google Scholar]
- Conaway H. H., Grigorie D., Lerner U. H. Stimulation of neonatal mouse calvarial bone resorption by the glucocorticoids hydrocortisone and dexamethasone. J Bone Miner Res. 1996 Oct;11(10):1419–1429. doi: 10.1002/jbmr.5650111008. [DOI] [PubMed] [Google Scholar]
- Deloffre P., Hans D., Rumelhart C., Mitton D., Tsouderos Y., Meunier P. J. Comparison between bone density and bone strength in glucocorticoid-treated aged ewes. Bone. 1995 Oct;17(4 Suppl):409S–414S. doi: 10.1016/8756-3282(95)00319-9. [DOI] [PubMed] [Google Scholar]
- Dempster D. W. Bone histomorphometry in glucocorticoid-induced osteoporosis. J Bone Miner Res. 1989 Apr;4(2):137–141. doi: 10.1002/jbmr.5650040202. [DOI] [PubMed] [Google Scholar]
- Dempster D. W., Moonga B. S., Stein L. S., Horbert W. R., Antakly T. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol. 1997 Sep;154(3):397–406. doi: 10.1677/joe.0.1540397. [DOI] [PubMed] [Google Scholar]
- Dunstan C. R., Somers N. M., Evans R. A. Osteocyte death and hip fracture. Calcif Tissue Int. 1993;53 (Suppl 1):S113–S117. doi: 10.1007/BF01673417. [DOI] [PubMed] [Google Scholar]
- FROST H. M. In vivo osteocyte death. J Bone Joint Surg Am. 1960 Jan;42-A:138–143. [PubMed] [Google Scholar]
- FROST H. M. Micropetrosis. J Bone Joint Surg Am. 1960 Jan;42-A:144–150. [PubMed] [Google Scholar]
- Falla N., Van Vlasselaer, Bierkens J., Borremans B., Schoeters G., Van Gorp U. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow. Blood. 1993 Dec 15;82(12):3580–3591. [PubMed] [Google Scholar]
- Felson D. T., Anderson J. J. Across-study evaluation of association between steroid dose and bolus steroids and avascular necrosis of bone. Lancet. 1987 Apr 18;1(8538):902–906. doi: 10.1016/s0140-6736(87)92870-4. [DOI] [PubMed] [Google Scholar]
- Ficat R. P. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. J Bone Joint Surg Br. 1985 Jan;67(1):3–9. doi: 10.1302/0301-620X.67B1.3155745. [DOI] [PubMed] [Google Scholar]
- Frey F. J. Kinetics and dynamics of prednisolone. Endocr Rev. 1987 Nov;8(4):453–473. doi: 10.1210/edrv-8-4-453. [DOI] [PubMed] [Google Scholar]
- Grardel B., Sutter B., Flautre B., Viguier E., Lavaste F., Hardouin P. Effects of glucocorticoids on skeletal growth in rabbits evaluated by dual-photon absorptiometry, microscopic connectivity and vertebral compressive strength. Osteoporos Int. 1994 Jul;4(4):204–210. doi: 10.1007/BF01623240. [DOI] [PubMed] [Google Scholar]
- Jilka R. L., Hangoc G., Girasole G., Passeri G., Williams D. C., Abrams J. S., Boyce B., Broxmeyer H., Manolagas S. C. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992 Jul 3;257(5066):88–91. doi: 10.1126/science.1621100. [DOI] [PubMed] [Google Scholar]
- Jilka R. L., Weinstein R. S., Bellido T., Parfitt A. M., Manolagas S. C. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998 May;13(5):793–802. doi: 10.1359/jbmr.1998.13.5.793. [DOI] [PubMed] [Google Scholar]
- Jilka R. L., Weinstein R. S., Takahashi K., Parfitt A. M., Manolagas S. C. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest. 1996 Apr 1;97(7):1732–1740. doi: 10.1172/JCI118600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEIN M., VILLANUEVA A. R., FROST H. M. A QUANTITATIVE HISTOLOGICAL STUDY OF RIB FROM 18 PATIENTS TREATED WITH ADRENAL CORTICAL STEROIDS. Acta Orthop Scand. 1965;35:171–184. doi: 10.3109/17453676508989351. [DOI] [PubMed] [Google Scholar]
- Kawai K., Tamaki A., Hirohata K. Steroid-induced accumulation of lipid in the osteocytes of the rabbit femoral head. A histochemical and electron microscopic study. J Bone Joint Surg Am. 1985 Jun;67(5):755–763. [PubMed] [Google Scholar]
- King C. S., Weir E. C., Gundberg C. W., Fox J., Insogna K. L. Effects of continuous glucocorticoid infusion on bone metabolism in the rat. Calcif Tissue Int. 1996 Sep;59(3):184–191. doi: 10.1007/s002239900107. [DOI] [PubMed] [Google Scholar]
- Li M., Shen Y., Halloran B. P., Baumann B. D., Miller K., Wronski T. J. Skeletal response to corticosteroid deficiency and excess in growing male rats. Bone. 1996 Aug;19(2):81–88. doi: 10.1016/8756-3282(96)00170-6. [DOI] [PubMed] [Google Scholar]
- Lian J. B., Shalhoub V., Aslam F., Frenkel B., Green J., Hamrah M., Stein G. S., Stein J. L. Species-specific glucocorticoid and 1,25-dihydroxyvitamin D responsiveness in mouse MC3T3-E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D down-regulates osteocalcin gene expression. Endocrinology. 1997 May;138(5):2117–2127. doi: 10.1210/endo.138.5.5117. [DOI] [PubMed] [Google Scholar]
- Lynch M. P., Capparelli C., Stein J. L., Stein G. S., Lian J. B. Apoptosis during bone-like tissue development in vitro. J Cell Biochem. 1998 Jan 1;68(1):31–49. [PubMed] [Google Scholar]
- Mankin H. J. Nontraumatic necrosis of bone (osteonecrosis). N Engl J Med. 1992 May 28;326(22):1473–1479. doi: 10.1056/NEJM199205283262206. [DOI] [PubMed] [Google Scholar]
- Newman E., Turner A. S., Wark J. D. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995 Apr;16(4 Suppl):277S–284S. doi: 10.1016/8756-3282(95)00026-a. [DOI] [PubMed] [Google Scholar]
- Noble B. S., Stevens H., Loveridge N., Reeve J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997 Mar;20(3):273–282. doi: 10.1016/s8756-3282(96)00365-1. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M., Drezner M. K., Glorieux F. H., Kanis J. A., Malluche H., Meunier P. J., Ott S. M., Recker R. R. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987 Dec;2(6):595–610. doi: 10.1002/jbmr.5650020617. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M., Mathews C. H., Villanueva A. R., Kleerekoper M., Frame B., Rao D. S. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983 Oct;72(4):1396–1409. doi: 10.1172/JCI111096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parfitt A. M. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994 Jul;55(3):273–286. doi: 10.1002/jcb.240550303. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M., Villanueva A. R., Foldes J., Rao D. S. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res. 1995 Mar;10(3):466–473. doi: 10.1002/jbmr.5650100319. [DOI] [PubMed] [Google Scholar]
- Quarles L. D. Prednisone-induced osteopenia in beagles: variable effects mediated by differential suppression of bone formation. Am J Physiol. 1992 Jul;263(1 Pt 1):E136–E141. doi: 10.1152/ajpendo.1992.263.1.E136. [DOI] [PubMed] [Google Scholar]
- Reid I. R. Pathogenesis and treatment of steroid osteoporosis. Clin Endocrinol (Oxf) 1989 Jan;30(1):83–103. doi: 10.1111/j.1365-2265.1989.tb03730.x. [DOI] [PubMed] [Google Scholar]
- Stanton B., Giebisch G., Klein-Robbenhaar G., Wade J., DeFronzo R. A. Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in rat kidney. J Clin Invest. 1985 Apr;75(4):1317–1326. doi: 10.1172/JCI111832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomkinson A., Reeve J., Shaw R. W., Noble B. S. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997 Sep;82(9):3128–3135. doi: 10.1210/jcem.82.9.4200. [DOI] [PubMed] [Google Scholar]
- Weinstein R. S., Bell N. H. Diminished rates of bone formation in normal black adults. N Engl J Med. 1988 Dec 29;319(26):1698–1701. doi: 10.1056/NEJM198812293192603. [DOI] [PubMed] [Google Scholar]
- Weinstein R. S., Jilka R. L., Parfitt A. M., Manolagas S. C. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology. 1997 Sep;138(9):4013–4021. doi: 10.1210/endo.138.9.5359. [DOI] [PubMed] [Google Scholar]