Abstract
The identification of human inflammatory cells that express inducible nitric oxide synthase and the clarification of the role of inducible nitric oxide synthase in human infectious or inflammatory processes have been elusive. In neutrophil-enriched fractions from urine, we demonstrate a 43-fold increase in nitric oxide synthase activity in patients with urinary tract infections compared with that in neutrophil-enriched fractions from noninfected controls. Partially purified inducible nitric oxide synthase is primarily membrane associated, calcium independent, and inhibited by arginine analogues with a rank order consistent with that of purified human inducible nitric oxide synthase. Molecular, biochemical, and immunocytochemical evidence unequivocally identifies inducible nitric oxide synthase as the major nitric oxide synthase isoform found in neutrophils isolated from urine during urinary tract infections. Elevated inducible nitric oxide synthase activity and elevated nitric oxide synthase protein measured in patients with urinary tract infections and treated with antibiotics does not decrease until 6-10 d of antibiotic treatment. The extended elevation of neutrophil inducible nitric oxide synthase during urinary tract infections may have both antimicrobial and proinflammatory functions.
Full Text
The Full Text of this article is available as a PDF (233.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agace W. W., Hedges S. R., Ceska M., Svanborg C. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J Clin Invest. 1993 Aug;92(2):780–785. doi: 10.1172/JCI116650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
- Bryant J. L., Jr, Mehta P., Von der Porten A., Mehta J. L. Co-purification of 130 kD nitric oxide synthase and a 22 kD link protein from human neutrophils. Biochem Biophys Res Commun. 1992 Nov 30;189(1):558–564. doi: 10.1016/0006-291x(92)91594-g. [DOI] [PubMed] [Google Scholar]
- Bukrinsky M. I., Nottet H. S., Schmidtmayerova H., Dubrovsky L., Flanagan C. R., Mullins M. E., Lipton S. A., Gendelman H. E. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med. 1995 Feb 1;181(2):735–745. doi: 10.1084/jem.181.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho H. J., Xie Q. W., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med. 1992 Aug 1;176(2):599–604. doi: 10.1084/jem.176.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Maria R., Cifone M. G., Trotta R., Rippo M. R., Festuccia C., Santoni A., Testi R. Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors. J Exp Med. 1994 Nov 1;180(5):1999–2004. doi: 10.1084/jem.180.5.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans T. J., Buttery L. D., Carpenter A., Springall D. R., Polak J. M., Cohen J. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9553–9558. doi: 10.1073/pnas.93.18.9553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOULD J. C., BOWIE J. H., CAMERON J. D. S. Dosage of antibiotics: relation between the in-vitro and in-vivo concentrations effective in urinary-tract infections. Lancet. 1953 Feb 21;1(6756):361–364. doi: 10.1016/s0140-6736(53)91040-x. [DOI] [PubMed] [Google Scholar]
- García-Cardeña G., Oh P., Liu J., Schnitzer J. E., Sessa W. C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6448–6453. doi: 10.1073/pnas.93.13.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedges S., Anderson P., Lidin-Janson G., de Man P., Svanborg C. Interleukin-6 response to deliberate colonization of the human urinary tract with gram-negative bacteria. Infect Immun. 1991 Jan;59(1):421–427. doi: 10.1128/iai.59.1.421-427.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibbs J. B., Jr Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol. 1991 Sep;142(7):565–598. doi: 10.1016/0923-2494(91)90103-p. [DOI] [PubMed] [Google Scholar]
- Katoh S., Orikasa S., Toyota S., Itoh S., Oikawa K., Fukushi Y., Suzuki Y. [Anti-bacterial defense mechanisms of the urinary tract constructed from intestinal segments. Studies on cell population and phagocytotic activity of urinary leucocytes, and bacterial growth in urine]. Nihon Hinyokika Gakkai Zasshi. 1991 Sep;82(9):1436–1445. doi: 10.5980/jpnjurol1989.82.1436. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Nathan C. F. Nitrite production by stimulated human polymorphonuclear leukocytes supplemented with azide and catalase. Biochem Biophys Res Commun. 1993 Nov 30;197(1):192–196. doi: 10.1006/bbrc.1993.2459. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lelchuk R., Radomski M. W., Martin J. F., Moncada S. Constitutive and inducible nitric oxide synthases in human megakaryoblastic cells. J Pharmacol Exp Ther. 1992 Sep;262(3):1220–1224. [PubMed] [Google Scholar]
- Liu J., García-Cardeña G., Sessa W. C. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry. 1995 Sep 26;34(38):12333–12340. doi: 10.1021/bi00038a029. [DOI] [PubMed] [Google Scholar]
- Liu J., Sessa W. C. Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase. J Biol Chem. 1994 Apr 22;269(16):11691–11694. [PubMed] [Google Scholar]
- Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
- Malawista S. E., Montgomery R. R., van Blaricom G. Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts. A new microbicidal pathway for polymorphonuclear leukocytes. J Clin Invest. 1992 Aug;90(2):631–636. doi: 10.1172/JCI115903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marletta M. A. Approaches toward selective inhibition of nitric oxide synthase. J Med Chem. 1994 Jun 24;37(13):1899–1907. doi: 10.1021/jm00039a001. [DOI] [PubMed] [Google Scholar]
- McCall T. B., Boughton-Smith N. K., Palmer R. M., Whittle B. J., Moncada S. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J. 1989 Jul 1;261(1):293–296. doi: 10.1042/bj2610293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles A. M., Owens M. W., Milligan S., Johnson G. G., Fields J. Z., Ing T. S., Kottapalli V., Keshavarzian A., Grisham M. B. Nitric oxide synthase in circulating vs. extravasated polymorphonuclear leukocytes. J Leukoc Biol. 1995 Nov;58(5):616–622. doi: 10.1002/jlb.58.5.616. [DOI] [PubMed] [Google Scholar]
- Mossalayi M. D., Paul-Eugène N., Ouaaz F., Arock M., Kolb J. P., Kilchherr E., Debré P., Dugas B. Involvement of Fc epsilon RII/CD23 and L-arginine-dependent pathway in IgE-mediated stimulation of human monocyte functions. Int Immunol. 1994 Jul;6(7):931–934. doi: 10.1093/intimm/6.7.931. [DOI] [PubMed] [Google Scholar]
- Nakane M., Pollock J. S., Klinghofer V., Basha F., Marsden P. A., Hokari A., Ogura T., Esumi H., Carter G. W. Functional expression of three isoforms of human nitric oxide synthase in baculovirus-infected insect cells. Biochem Biophys Res Commun. 1995 Jan 17;206(2):511–517. doi: 10.1006/bbrc.1995.1073. [DOI] [PubMed] [Google Scholar]
- Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
- Ney P., Schröder H., Schrör K. Nitrovasodilator-induced inhibition of LTB4 release from human PMN may be mediated by cyclic GMP. Eicosanoids. 1990;3(4):243–245. [PubMed] [Google Scholar]
- Nicholson S., Bonecini-Almeida M. da G., Lapa e Silva J. R., Nathan C., Xie Q. W., Mumford R., Weidner J. R., Calaycay J., Geng J., Boechat N. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med. 1996 May 1;183(5):2293–2302. doi: 10.1084/jem.183.5.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nussler A. K., Di Silvio M., Billiar T. R., Hoffman R. A., Geller D. A., Selby R., Madariaga J., Simmons R. L. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med. 1992 Jul 1;176(1):261–264. doi: 10.1084/jem.176.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer R. M., Hickery M. S., Charles I. G., Moncada S., Bayliss M. T. Induction of nitric oxide synthase in human chondrocytes. Biochem Biophys Res Commun. 1993 May 28;193(1):398–405. doi: 10.1006/bbrc.1993.1637. [DOI] [PubMed] [Google Scholar]
- Pollock J. S., Förstermann U., Mitchell J. A., Warner T. D., Schmidt H. H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10480–10484. doi: 10.1073/pnas.88.23.10480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock J. S., Nakane M., Buttery L. D., Martinez A., Springall D., Polak J. M., Förstermann U., Murad F. Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol. 1993 Nov;265(5 Pt 1):C1379–C1387. doi: 10.1152/ajpcell.1993.265.5.C1379. [DOI] [PubMed] [Google Scholar]
- Reiling N., Ulmer A. J., Duchrow M., Ernst M., Flad H. D., Hauschildt S. Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol. 1994 Aug;24(8):1941–1944. doi: 10.1002/eji.1830240836. [DOI] [PubMed] [Google Scholar]
- Sakai N., Milstien S. Availability of tetrahydrobiopterin is not a factor in the inability to detect nitric oxide production by human macrophages. Biochem Biophys Res Commun. 1993 May 28;193(1):378–383. doi: 10.1006/bbrc.1993.1634. [DOI] [PubMed] [Google Scholar]
- Schmidt H. H., Warner T. D., Nakane M., Förstermann U., Murad F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol. 1992 Apr;41(4):615–624. [PubMed] [Google Scholar]
- Scott-Burden T., Schini V. B., Elizondo E., Junquero D. C., Vanhoutte P. M. Platelet-derived growth factor suppresses and fibroblast growth factor enhances cytokine-induced production of nitric oxide by cultured smooth muscle cells. Effects on cell proliferation. Circ Res. 1992 Nov;71(5):1088–1100. doi: 10.1161/01.res.71.5.1088. [DOI] [PubMed] [Google Scholar]
- Sessa W. C., García-Cardeña G., Liu J., Keh A., Pollock J. S., Bradley J., Thiru S., Braverman I. M., Desai K. M. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem. 1995 Jul 28;270(30):17641–17644. doi: 10.1074/jbc.270.30.17641. [DOI] [PubMed] [Google Scholar]
- Smith S. D., Wheeler M. A., Weiss R. M. Nitric oxide synthase: an endogenous source of elevated nitrite in infected urine. Kidney Int. 1994 Feb;45(2):586–591. doi: 10.1038/ki.1994.76. [DOI] [PubMed] [Google Scholar]
- Stuehr D. J., Cho H. J., Kwon N. S., Weise M. F., Nathan C. F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. doi: 10.1073/pnas.88.17.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dervort A. L., Yan L., Madara P. J., Cobb J. P., Wesley R. A., Corriveau C. C., Tropea M. M., Danner R. L. Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J Immunol. 1994 Apr 15;152(8):4102–4109. [PubMed] [Google Scholar]
- Vodovotz Y., Russell D., Xie Q. W., Bogdan C., Nathan C. Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J Immunol. 1995 Mar 15;154(6):2914–2925. [PubMed] [Google Scholar]
- Vouldoukis I., Riveros-Moreno V., Dugas B., Ouaaz F., Bécherel P., Debré P., Moncada S., Mossalayi M. D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7804–7808. doi: 10.1073/pnas.92.17.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright C. D., Mülsch A., Busse R., Osswald H. Generation of nitric oxide by human neutrophils. Biochem Biophys Res Commun. 1989 Apr 28;160(2):813–819. doi: 10.1016/0006-291x(89)92506-0. [DOI] [PubMed] [Google Scholar]
- Yan L., Vandivier R. W., Suffredini A. F., Danner R. L. Human polymorphonuclear leukocytes lack detectable nitric oxide synthase activity. J Immunol. 1994 Aug 15;153(4):1825–1834. [PubMed] [Google Scholar]
- Yui Y., Hattori R., Kosuga K., Eizawa H., Hiki K., Ohkawa S., Ohnishi K., Terao S., Kawai C. Calmodulin-independent nitric oxide synthase from rat polymorphonuclear neutrophils. J Biol Chem. 1991 Feb 25;266(6):3369–3371. [PubMed] [Google Scholar]