Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2016 Mar 16;6:23281. doi: 10.1038/srep23281

Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains

Fuyuki Kametani 1,a, Tomokazu Obi 2, Takeo Shishido 2, Hiroyasu Akatsu 3, Shigeo Murayama 4, Yuko Saito 5, Mari Yoshida 6, Masato Hasegawa 1,b
PMCID: PMC4793195  PMID: 26980269

Abstract

TDP-43 is the major disease-associated protein involved in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions linked to TDP-43 pathology (FTLD-TDP). Abnormal phosphorylation, truncation and cytoplasmic mis-localization are known to be the characteristics for the aggregated forms of TDP-43, and gain of toxic abnormal TDP-43 or loss of function of physiological TDP-43 have been suggested as the cause of neurodegeneration. However, most of the post-translational modifications or truncation sites in the abnormal TDP-43 in brains of patients remain to be identified by protein chemical analysis. In this study, we carried out a highly sensitive liquid chromatography-mass spectrometry analysis of Sarkosyl-insoluble pathological TDP-43 from brains of ALS patients and identified several novel phosphorylation sites, deamidation sites, and cleavage sites. Almost all modifications were localized in the Gly-rich C-terminal half. Most of the cleavage sites identified in this study are novel and are located in N-terminal half, suggesting that these sites may be more accessible to proteolytic enzymes. The data obtained in this study provide a foundation for the molecular mechanisms of TDP-43 aggregation and ALS pathogenesis.


Transactivation response (TAR) DNA-binding protein 43 (TDP-43), encoded by the TARDBP gene, is a highly conserved, ubiquitously expressed nuclear protein. It has conserved RNA recognition motifs (RRM1/RRM2) flanked on either side by N-terminal and glycine-rich C-terminal domains that mediate protein-protein interactions1,2. Recent studies show that TDP-43 is a nuclear ribonucleoprotein implicated in exon splicing, gene transcription, regulation of mRNA stability, mRNA biosynthesis, and formation of nuclear bodies3,4,5,6,7,8,9,10,11. Furthermore, TDP-43 is thought to be essential for early development, because homozygous disruption of the TARDBP gene causes early embryonic lethality12,13.

TDP-43 is the major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD) linked to TDP-43 pathology (FTLD-TDP)14,15, and other neurodegenerative disorders16,17,18,19,20. Mutations of TDP-43 in familial and sporadic ALS and FTLD cases have been linked to the development of TDP-43 pathology21,22,23,24. These mutations are mostly located in the C-terminal glycine-rich region25, suggesting that conformational change of this region is closely related to the pathology.

TDP-43 is predominantly localized in the nucleus, but under pathological conditions it is translocated to the cytosol14,15,26,27,28,29,30. Thus, loss of normal function of nuclear TDP-43 due to cytoplasmic mislocalization, and toxic gain of function due to TDP-43 aggregation are potential disease mechanisms14,15.

Immunoblotting of the Sarkosyl-insoluble fractions from FTLD and ALS cases using phosphospecific antibodies clearly demonstrated that hyperphosphorylated full-length TDP-43 of 45 kDa, smearing substances, and fragments at 18–25 and 35kDa are the major species of TDP-43 26,31,32. We identified at least three C-terminal banding patterns that distinguish diseases with TDP-43 proteinopathy and reported that the banding pattern in different brain regions and spinal cord of individual patients is indistinguishable. Corresponding patterns of protease-resistant phosphorylated TDP-43 are also seen among the pathological phenotypes26,27,32. Recently, we showed that insoluble TDP-43 aggregates in brains of ALS and FTLD-TDP patients have prion-like properties33.

TDP-43 phosphorylation, cleavage and cytoplasmic mislocalization are all associated with TDP-43 aggregation. However it remains to be clarified whether these modifications are the cause of the disease. Recent reports on post-translational modifications, including fragmentation, were based on studies of cellular or animal models overexpressing TDP-43 or its derivatives34,35,36,37. However, TDP-43 aggregate formation in these artificial models may be different from that in the brains of patients. Therefore, it is important and essential for elucidation of the pathogenesis to identify the pathological events in TDP-43 truly occurred in the brain of patients. In this study, we carried out detailed molecular analysis of pathological TDP-43 aggregates in ALS brains.

Results

Immunoblot analysis revealed that abundant abnormal TDP-43 was recovered in the Sarkosyl-insoluble fractions of brains from both ALS cases as shown in Fig. 1A. A phosphorylation-independent anti-TDP-43 detected normal TDP-43 of 43 kD in the fractions of both ALS and control brains, but also detected abnormal TDP-43 bands, including full-length phosphorylated TDP-43 of 45 kD, ~25 kD fragments and smears in ALS brains (Fig. 1A). The pS409/410 antibody, which specifically recognizes the abnormal phosphorylation of Ser409 and 410 strongly reacted with these pathological TDP-43 bands and additional fragments of 18 ~ 24 kD (Fig. 1A). No such bands were detected in the same fraction of control brain. Intensities of pS409/410 immunoreactive bands in both ALS cases were 5 ~ 10 times higher compared with those from the other cases previously analyzed in our lab (data not shown). Therefore, we thought these two cases are good for the protein chemical analysis of pathological TDP-43.

Figure 1. SDS-polyacrylamide gel electrophoresis (PAGE) and immunoblotting of Sarkosyl-insoluble fraction from ALS case 1 brain and ALS case 2 brain.

Figure 1

(A) A phosphorylation-independent anti-TDP-43 detected normal TDP-43 of 43 kD in the fractions of both ALS and control brains, but also detected abnormal TDP-43 bands, including full-length phosphorylated TDP-43 of 45 kD, ~25 kD fragments and smears in ALS brains. (B) TDP-43-positive bands were excised as indicated.

After SDS-PAGE, the gel portions corresponding to these bands were cut out as shown in Fig. 1B and digested with trypsin and chymotrypsin. Digests were analyzed with nano-flow LC-MS/MS. As shown in Tables 1 and 2, we identified 229 peptides from brain of case 1 and 92 peptides from brain of case 2; this difference may reflect the differences in total amounts of pathological TDP-43 in these brains and the numbers of fractions. These peptides covered about 90% of the intact molecule (Tables 1 and 2). Identified peptides (representative), modifications and cleavage sites are shown and summarized in Figs 2 and 3. Further cleavage site peptides are shown in supplemental Fig. S1. Other proteins contaminating the Sarkosyl-insoluble fractions are listed in supplemental Table S1.

Table 1. List of identifid peptides derived from accumulated TDP-43 in ALS patient case 1.

Query Start End Observed Mr(expt) Mr(calc) Delta Score Expect Peptide
fraction1 chymotrypsin              
9373 212 226 871.6568 1741.299 1741.8386 −0.5395 91 5.40E-09 F.SQYGDVMDVFIPKPF.R
9389 212 226 872.741 1743.4674 1741.8386 1.6288 41 0.00021 F.SQYGDVMDVFIPKPF.R
9442 212 226 880.2186 1758.4227 1757.8335 0.5892 60 2.70E-05 F.SQYGDVMoDVFIPKPF.R
6387 215 226 683.1282 1364.2418 1363.6846 0.5572 23 0.0077 Y.GDVMDVFIPKPF.R
3616 235 243 520.0455 1038.0765 1039.4223 −1.3458 24 0.025 F.ADDQIAQSpL.C
4502 277 289 583.8335 1165.6524 1164.4949 1.1576 38 0.00028 F.GGNPGGFGNQGGF.G
12543 290 316 829.3413 2485.0021 2486.0452 −1.0431 45 0.0016 F.GNSRGGGAGLGN*NQGSNMGGGMNFGAF.S
  trypsin                
7855 84 95 641.5232 1281.0318 1280.5918 0.44 48 3.10E-05 R.KMDETDASSAVK.V
8748 103 114 671.5735 1341.1324 1340.7704 0.362 21 0.052 K.TSDLIVLGLPWK.T
3193 115 121 417.6076 833.2006 833.4131 −0.2124 26 0.0036 K.TTEQDLK.E
3198 115 121 417.6429 833.2713 833.4131 −0.1417 23 0.0071 K.TTEQDLK.E
6245 152 160 572.4623 1142.9101 1143.5448 −0.6347 20 0.014 R.FTEYETQVK.V
6249 152 160 572.5684 1143.1223 1143.5448 −0.4225 24 0.0057 R.FTEYETQVK.V
10549 215 227 513.2426 1536.7058 1535.7807 0.9252 26 0.025 Y.GDVMDVFIPKPFR
7515 252 263 626.6138 1251.2131 1250.6619 0.5512 36 0.0004 K.GISVHISNAEPK.H
7516 252 263 626.6459 1251.2772 1251.6459 −0.3687 33 0.0037 K.GISVHISN*AEPK.H
10016 276 291 742.3951 1482.7757 1482.6277 0.148 42 0.00011 R.FGGNPGGFGNQGGFGN.S
12266 276 293 863.7729 1725.5312 1725.7608 −0.2296 105 2.30E-10 R.FGGNPGGFGNQGGFGNSR.G
12269 276 293 864.0314 1726.0482 1725.7608 0.2874 103 2.30E-10 R.FGGNPGGFGNQGGFGNSR.G
12274 276 293 864.0852 1726.1559 1725.7608 0.3951 98 2.10E-09 R.FGGNPGGFGNQGGFGNSR.G
12276 276 293 864.1173 1726.2201 1725.7608 0.4592 97 2.30E-09 R.FGGNPGGFGNQGGFGNSR.G
12278 276 293 864.1233 1726.232 1725.7608 0.4712 101 3.40E-10 R.FGGNPGGFGNQGGFGNSR.G
12279 276 293 864.1337 1726.2528 1725.7608 0.492 111 8.90E-11 R.FGGNPGGFGNQGGFGNSR.G
12280 276 293 576.432 1726.274 1725.7608 0.5132 26 0.0082 R.FGGNPGGFGNQGGFGNSR.G
12290 276 293 576.6025 1726.7856 1725.7608 1.0248 36 0.0006 R.FGGNPGGFGNQGGFGNSR.G
12268 276 293 576.265 1725.7732 1726.7448 −0.9716 37 0.0007 R.FGGNPGGFGNQGGFGN*SR.G
12271 276 293 864.0555 1726.0964 1726.7448 −0.6484 90 1.30E-08 R.FGGNPGGFGN*QGGFGNSR.G
fraction2 chymotrypsin              
5089 176 188 742.6311 1483.2476 1483.7518 −0.5042 43 0.00092 C.KLPN*SKQSQDEPL.R
5096 176 188 743.321 1484.6275 1483.7518 0.8757 46 0.00041 C.KLPN*SKQSQDEPL.R
4168 211 221 654.5313 1307.0479 1306.554 0.4939 39 0.00027 F.FSQYGDVMDVF.I
6859 211 226 945.4351 1888.8556 1888.907 −0.0514 48 3.70E-05 F.FSQYGDVMDVFIPKPF.R
6861 211 226 946.2177 1890.4207 1889.891 0.5298 30 0.0016 F.FSQ*YGDVMDVFIPKPF.R
6880 211 226 953.7546 1905.4947 1904.9019 0.5928 52 4.10E-05 F.FSQYGDVMoDVFIPKPF.R
3531 212 221 580.9187 1159.8228 1159.4856 0.3373 35 5.70E-04 F.SQYGDVMDVF.I
6412 212 226 872.3367 1742.6589 1741.8386 0.8203 73 1.50E-07 F.SQYGDVMDVFIPKPF.R
6461 212 226 880.2487 1758.4828 1757.8335 0.6493 52 9.50E-05 F.SQYGDVMoDVFIPKPF.R
4522 215 226 682.6916 1363.3687 1363.6846 −0.3159 38 3.10E-04 Y.GDVMDVFIPKPF.R
4524 215 226 683.6007 1365.1869 1363.6846 1.5022 21 2.20E-02 Y.GDVMDVFIPKPF.R
6869 271 289 633.079 1896.2151 1897.8456 −1.6305 42 0.00049 L.ERSGRFGGNPGGFGN*QGGF.G
3544 277 289 583.3915 1164.7685 1164.4949 0.2737 28 0.0025 F.GGNPGGFGNQGGF.G
3546 277 289 583.4573 1164.9001 1164.4949 0.4053 27 0.0051 F.GGNPGGFGNQGGF.G
3548 277 289 583.528 1165.0413 1164.4949 0.5465 30 0.0014 F.GGNPGGFGNQGGF.G
7741 290 313 1106.3008 2210.587 2210.9182 −0.3312 95 1.50E-08 F.GNSRGGGAGLGNNQGSN*MGGGMNF.G
7743 290 313 737.9193 2210.7361 2210.9182 −0.1821 50 0.00044 F.GNSRGGGAGLGNNQGSN*MGGGMNF.G
7770 290 313 743.0682 2226.1827 2226.9131 −0.7304 61 2.20E-05 F.GNSRGGGAGLGN*NQGSNMoGGGMNF.G
7772 290 313 743.2908 2226.8505 2226.9131 −0.0626 38 0.0067 F.GNSRGGGAGLGN*NQGSNMGGGMoNF.G
7775 290 313 743.557 2227.6492 2226.9131 0.7361 48 0.00017 F.GNSRGGGAGLGNNQGSN*MGGGMoNF.G
7791 290 313 1121.8962 2241.7779 2241.924 −0.1461 65 7.30E-07 F.GNSRGGGAGLGNNQGSNMoGGGMoNF.G
7792 290 313 748.4241 2242.2504 2242.908 −0.6576 66 1.00E-05 F.GNSRGGGAGLGN*NQGSNMoGGGMoNF.G
7795 290 313 748.7297 2243.1672 2243.892 −0.7248 36 0.01 F.GN*SRGGGAGLGNNQ*GSNMoGGGMoNF.G
7796 290 313 748.7909 2243.3508 2243.892 −0.5412 47 0.00068 F.GNSRGGGAGLGN*NQGSN*MoGGGMoNF.G
7799 290 313 1123.2252 2244.4359 2243.892 0.5439 69 3.10E-07 F.GNSRGGGAGLGN*NQGSN*MoGGGMoNF.G
8563 290 316 829.6099 2485.8078 2486.0452 −0.2374 58 8.60E-05 F.GN*SRGGGAGLGNNQGSNMGGGMNFGAF.S
8567 290 316 830.2059 2487.5958 2487.0292 0.5666 67 1.20E-05 F.GNSRGGGAGLGN*NQGSN*MGGGMNFGAF.S
8603 290 316 834.7759 2501.3058 2503.0241 −1.7183 56 0.00012 F.GN*SRGGGAGLGNNQGSNMGGGMoN*FGAF.S
8606 290 316 835.1727 2502.4962 2503.0241 −0.5279 73 2.50E-06 F.GN*SRGGGAGLGNNQGSNMoGGGMN*FGAF.S
8611 290 316 835.5923 2503.755 2503.0241 0.7309 59 6.60E-05 F.GN*SRGGGAGLGNNQGSNMGGGMoN*FGAF.S
8667 290 316 840.1269 2517.3588 2518.035 −0.6762 61 4.90E-05 F.GNSRGGGAGLGNNQ*GSNMoGGGMoNFGAF.S
8671 290 316 840.6654 2518.9744 2519.019 −0.0446 64 2.20E-05 F.GN*SRGGGAGLGNNQGSNMoGGGMoN*FGAF.S
1915 317 323 779.2965 778.2892 778.3353 −0.0462 37 0.00039 F.SINPAMoM.A
1916 317 323 779.4086 778.4013 778.3353 0.066 37 0.00038 F.SINPAMoM.A
4592 317 330 688.1877 1374.3609 1374.6635 −0.3026 28 0.0041 F.SINPAMMoAAAQAAL.Q
4704 317 330 696.6204 1391.2262 1391.6424 −0.4163 48 0.00028 F.SINPAMoMoAAAQ*AAL.Q
5282 317 331 760.6963 1519.378 1518.717 0.661 62 1.30E-05 F.SINPAMoMoAAAQAALQ.S
6767 317 334 616.6206 1846.84 1846.8705 −0.0305 21 0.019 F.SINPAMMAAAQAALQSSW.G
6768 317 334 924.6777 1847.3409 1846.8705 0.4704 43 9.10E-05 F.SINPAMMAAAQAALQSSW.G
6835 317 334 941.1243 1880.234 1879.8444 0.3896 33 0.014 F.SINPAMoMoAAAQ*AALQSSW.G
3280 324 334 552.4872 1102.9598 1102.5407 0.4191 68 7.20E-07 M.AAAQAALQSSW.G
7465 340 359 1037.6927 2073.3709 2072.893 0.478 38 0.00028 M.LASQQNQSGPSGNNQNQGNM.Q
10098 340 367 1015.7645 3044.2718 3044.3391 −0.0673 68 1.60E-05 M.LASQQNQSGPSGNNQNQGN*MQREPNQAF.G
10096 340 367 1015.7145 3044.1216 3045.3231 −1.2014 60 8.90E-05 M.LASQQNQSGPSGNNQN*Q*GNMQREPNQAF.G
10136 340 367 1020.859 3059.5552 3060.334 −0.7788 75 9.60E-07 M.LASQQNQSGPSGNNQNQ*GNMoQREPNQAF.G
10145 340 367 1021.6365 3061.8876 3061.318 0.5696 57 0.00017 M.LASQQNQSGPSGNNQ*N*QGNMoQREPNQAF.G
10150 340 367 1021.8416 3062.5028 3062.302 0.2008 45 0.0027 M.LASQQNQSGPSGN*N*Q*NQGNMoQREPNQAF.G
9721 341 367 978.223 2931.6472 2931.255 0.3922 50 0.00076 L.ASQQNQSGPSGNNQNQGN*MQREPNQAF.G
9722 341 367 978.352 2932.0343 2931.255 0.7793 48 0.0014 L.ASQQNQSGPSGNNQN*QGNMQREPNQAF.G
9763 341 367 983.592 2947.7543 2947.2499 0.5044 34 0.012 L.ASQQNQSGPSGNNQNQGNMoQREPNQ*AF.G
9764 341 367 983.6382 2947.8927 2947.2499 0.6428 40 0.0091 L.ASQQNQSGPSGNNQNQGNMoQREPNQ*AF.G
9765 341 367 983.6984 2948.0733 2947.2499 0.8233 50 9.70E-05 L.ASQQNQSGPSGNNQNQGNMoQREPN*QAF.G
9772 341 367 983.9515 2948.8328 2948.2339 0.5989 37 0.018 L.ASQQNQ*SGPSGN*NQNQGNMoQREPNQAF.G
6163 389 405 561.7853 1682.334 1680.5164 1.8176 20 0.034 A.SpNAGSpGSGFN*GGFGSSM.D
2063 398 405 426.5261 851.0376 851.2521 −0.2145 13 0.063 F.NGGFGSpSMo.D
2064 398 405 426.5549 851.0953 851.2521 −0.1568 13 0.057 F.NGGFGSpSMo.D
  trypsin                
4541 252 263 626.1067 1250.1988 1250.6619 −0.4631 47 3.70E-05 K.GISVHISNAEPK.H
4554 252 263 626.5655 1251.1164 1251.6459 −0.5295 30 0.0069 K.GISVHISN*AEPK.H
10298 273 293 676.4501 2026.3284 2026.8994 −0.571 49 3.20E-05 R.SGRFGGN*PGGFGNQGGFGNSR.G
8412 276 293 863.5454 1725.0763 1725.7608 −0.6845 68 4.20E-07 R.FGGNPGGFGNQGGFGNSR.G
8413 276 293 863.6377 1725.2608 1725.7608 −0.5 74 1.00E-07 R.FGGNPGGFGNQGGFGNSR.G
8414 276 293 863.6544 1725.2943 1725.7608 −0.4665 81 2.80E-08 R.FGGNPGGFGNQGGFGNSR.G
8415 276 293 863.7958 1725.577 1725.7608 −0.1838 96 4.00E-09 R.FGGNPGGFGNQGGFGNSR.G
8421 276 293 864.0331 1726.0516 1725.7608 0.2908 90 1.30E-08 R.FGGNPGGFGNQGGFGNSR.G
8424 276 293 864.0687 1726.1228 1725.7608 0.3619 82 2.10E-08 R.FGGNPGGFGNQGGFGNSR.G
8425 276 293 864.0773 1726.14 1725.7608 0.3792 102 8.60E-10 R.FGGNPGGFGNQGGFGNSR.G
8426 276 293 864.0829 1726.1512 1725.7608 0.3904 112 8.80E-11 R.FGGNPGGFGNQGGFGNSR.G
8427 276 293 864.0865 1726.1585 1725.7608 0.3977 83 1.60E-08 R.FGGNPGGFGNQGGFGNSR.G
8428 276 293 864.1036 1726.1926 1725.7608 0.4318 74 1.10E-07 R.FGGNPGGFGNQGGFGNSR.G
8429 276 293 864.1146 1726.2146 1725.7608 0.4537 103 5.60E-10 R.FGGNPGGFGNQGGFGNSR.G
8416 276 293 863.8204 1725.6263 1726.7448 −1.1185 87 2.10E-08 R.FGGNPGGFGN*QGGFGNSR.G
8417 276 293 863.9819 1725.9493 1726.7448 −0.7955 88 2.50E-08 R.FGGN*PGGFGNQGGFGNSR.G
8419 276 293 863.9979 1725.9813 1726.7448 −0.7635 90 1.30E-08 R.FGGNPGGFGN*QGGFGNSR.G
8420 276 293 864.0292 1726.0438 1726.7448 −0.701 81 2.40E-08 R.FGGN*PGGFGNQGGFGNSR.G
8423 276 293 864.066 1726.1175 1726.7448 −0.6273 69 1.70E-06 R.FGGN*PGGFGNQGGFGNSR.G
8430 276 293 864.1177 1726.2209 1726.7448 −0.5239 90 1.20E-08 R.FGGN*PGGFGNQGGFGNSR.G
8434 276 293 864.2111 1726.4077 1726.7448 −0.3371 96 3.30E-09 R.FGGNPGGFGN*QGGFGNSR.G
8435 276 293 864.2555 1726.4964 1726.7448 −0.2484 95 4.30E-09 R.FGGNPGGFGN*QGGFGNSR.G
8436 276 293 576.5455 1726.6148 1726.7448 −0.1301 31 0.012 R.FGGNPGGFGNQGGFGN*SR.G
8438 276 293 864.4259 1726.8372 1726.7448 0.0924 82 1.00E-07 R.FGGN*PGGFGNQGGFGNSR.G
8439 276 293 864.4338 1726.853 1726.7448 0.1082 82 1.00E-07 R.FGGNPGGFGN*QGGFGNSR.G
8440 276 293 864.4481 1726.8817 1726.7448 0.1369 77 3.30E-07 R.FGGNPGGFGN*QGGFGNSR.G
8441 276 293 864.4512 1726.8878 1726.7448 0.143 72 9.10E-07 R.FGGNPGGFGNQ*GGFGNSR.G
8443 276 293 864.5175 1727.0205 1726.7448 0.2757 90 3.90E-09 R.FGGNPGGFGN*QGGFGNSR.G
8444 276 293 576.6903 1727.0491 1726.7448 0.3043 40 0.00049 R.FGGNPGGFGNQGGFGN*SR.G
8445 276 293 864.5552 1727.0959 1726.7448 0.3511 78 5.70E-08 R.FGGNPGGFGN*QGGFGNSR.G
8447 276 293 864.6735 1727.3324 1726.7448 0.5875 78 1.50E-07 R.FGGN*PGGFGNQGGFGNSR.G
8448 276 293 864.687 1727.3595 1726.7448 0.6146 81 2.60E-08 R.FGGN*PGGFGNQGGFGNSR.G
8446 276 293 864.6155 1727.2164 1727.7288 −0.5124 79 1.50E-07 R.FGGN*PGGFGNQ*GGFGNSR.G
8458 276 293 865.0176 1728.0206 1727.7288 0.2918 53 1.20E-05 R.FGGN*PGGFGNQGGFGN*SR.G
8463 276 293 865.0424 1728.0703 1727.7288 0.3415 39 0.00023 R.FGGN*PGGFGNQ*GGFGNSR.G
8470 276 293 865.0927 1728.1707 1727.7288 0.4419 50 2.10E-05 R.FGGN*PGGFGNQGGFGN*SR.G
8508 276 293 865.5012 1728.9879 1728.7128 0.275 32 0.0016 R.FGGN*PGGFGN*Q*GGFGNSR.G
5555 280 293 676.4501 1350.8856 1350.6065 0.2791 75 1.00E-07 N.PGGFGNQGGFGNSR.G
fraction3 chymotrypsin              
9282 211 226 945.6774 1889.3402 1888.907 0.4332 32 0.001 F.FSQYGDVMDVFIPKPF.R
8489 212 226 872.2216 1742.4286 1741.8386 0.59 68 4.10E-07 F.SQYGDVMDVFIPKPF.R
8572 212 226 879.9073 1757.8001 1757.8335 −0.0333 33 0.0012 F.SQYGDVMoDVFIPKPF.R
4043 277 289 583.3818 1164.7491 1164.4949 0.2543 35 0.00048 F.GGNPGGFGNQGGF.G
4044 277 289 583.4044 1164.7942 1164.4949 0.2993 27 0.0032 F.GGNPGGFGNQGGF.G
4048 277 289 583.4793 1164.9441 1164.4949 0.4492 37 0.00059 F.GGNPGGFGNQGGF.G
4057 277 289 583.5714 1165.1283 1164.4949 0.6334 20 0.014 F.GGNPGGFGNQGGF.G
10527 290 313 743.5016 2227.4829 2225.9291 1.5539 32 0.0086 F.GNSRGGGAGLGNNQGSNMoGGGMNF.G
10566 290 313 1122.9318 2243.849 2243.892 −0.043 27 0.021 F.GNSRGGGAGLGN*NQ*GSNMoGGGMoNF.G
11297 290 316 840.3088 2517.9047 2518.035 −0.1303 38 0.0081 F.GNSRGGGAGLGN*NQGSNMoGGGMoNFGAF.S
11299 290 316 840.5651 2518.6734 2518.035 0.6383 30 0.0058 F.GN*SRGGGAGLGNNQGSNMoGGGMoNFGAF.S
7796 298 313 546.0648 1635.1726 1636.5535 −1.3808 24 0.082 A.GLGN*NQ*GSpN*MGGGMNF.G
5837 317 330 688.5671 1375.1196 1374.6635 0.4561 25 0.0073 F.SINPAMMAAAQAAL.Q
3589 324 334 552.6029 1103.1912 1102.5407 0.6506 36 0.0017 M.AAAQAALQSSW.G
1956 398 405 426.5643 851.1141 852.2361 −1.122 23 0.038 F.N*GGFGSpSMo.D
  trypsin                
6817 103 114 671.6575 1341.3004 1340.7704 0.53 61 2.90E-06 K.TSDLIVLGLPWK
4663 152 160 572.6335 1143.2524 1143.5448 −0.2924 41 0.00021 R.FTEYETQVK.V
4677 152 160 573.5289 1145.0432 1143.5448 1.4984 33 0.00079 R.FTEYETQVK.V
5751 252 263 626.5578 1251.101 1251.6459 −0.5448 33 0.0017 K.GISVHISN*AEPK.H
11145 276 293 864.0863 1726.158 1725.7608 0.3972 104 9.80E-10 R.FGGNPGGFGNQGGFGNSR.G
11147 276 293 576.6158 1726.8257 1725.7608 1.0649 43 0.00028 R.FGGNPGGFGNQGGFGNSR.G
11138 276 293 864.0644 1726.1142 1726.7448 −0.6306 99 3.00E-09 R.FGGN*PGGFGNQGGFGNSR.G
11140 276 293 864.1228 1726.231 1726.7448 −0.5138 92 1.60E-08 R.FGGNPGGFGNQGGFGN*SR.G
11142 276 293 864.1336 1726.2527 1726.7448 −0.4922 85 1.60E-08 R.FGGNPGGFGN*QGGFGNSR.G
11144 276 293 864.2585 1726.5024 1726.7448 −0.2424 25 0.052 R.FGGN*PGGFGNQGGFGNSR.G
11157 276 293 576.9172 1727.7297 1726.7448 0.9849 59 3.00E-05 R.FGGNPGGFGNQGGFGN*SR.G
fraction4 chymotrypsin              
4202 153 162 622.3894 1242.7642 1242.5802 0.184 40 0.00024 F.TEYETQVKVMo.S
9557 290 313 748.4747 2242.4024 2242.908 −0.5056 65 1.20E-05 F.GN*SRGGGAGLGNNQGSNMoGGGMoNF.G
  trypsin                
15817 56 79 875.6911 2624.0515 2623.3799 0.6716 30 0.0048 R.LVEGILHAPDAGWGNLVYVVNYPK.D
15818 56 79 875.9263 2624.757 2623.3799 1.3771 48 0.00018 R.LVEGILHAPDAGWGNLVYVVNYPK.D
15822 56 79 876.7198 2627.1377 2625.3479 1.7899 40 0.003 R.LVEGILHAPDAGWGN*LVYVVN*YPK.D
5505 84 95 641.2124 1280.4102 1280.5918 −0.1816 35 0.0015 R.KMDETDASSAVK.V
5513 84 95 641.6223 1281.2301 1280.5918 0.6383 64 1.20E-06 R.KMDETDASSAVK.V
5516 84 95 428.1922 1281.5549 1280.5918 0.963 30 0.0056 R.KMDETDASSAVK.V
5728 84 95 649.5043 1296.9941 1296.5867 0.4074 51 1.60E-05 R.KMoDETDASSAVK.V
4136 85 95 576.8164 1151.6183 1152.4969 −0.8786 32 0.0011 K.MDETDASSAVK.V
4140 85 95 576.885 1151.7555 1152.4969 −0.7414 20 0.013 K.MDETDASSAVK.V
4159 85 95 577.0442 1152.0738 1152.4969 −0.423 22 0.008 K.MDETDASSAVK.V
4161 85 95 577.0544 1152.0943 1152.4969 −0.4025 24 0.014 K.MDETDASSAVK.V
4173 85 95 577.1104 1152.2063 1152.4969 −0.2906 50 2.10E-05 K.MDETDASSAVK.V
4196 85 95 577.2958 1152.577 1152.4969 0.0802 20 0.053 K.MDETDASSAVK.V
4204 85 95 577.8925 1153.7704 1152.4969 1.2735 26 0.0035 K.MDETDASSAVK.V
6390 103 114 671.2714 1340.5282 1340.7704 −0.2422 54 1.80E-05 K.TSDLIVLGLPWK.T
4096 152 160 572.927 1143.8394 1143.5448 0.2946 39 0.00021 R.FTEYETQVK.V
4097 152 160 572.9576 1143.9006 1143.5448 0.3558 28 0.0032 R.FTEYETQVK.V
4100 152 160 573.1072 1144.1998 1143.5448 0.655 31 0.0023 R.FTEYETQVK.V
5209 252 263 626.5698 1251.1251 1250.6619 0.4632 34 0.00061 K.GISVHISNAEPK.H
10703 276 293 864.0738 1726.1331 1725.7608 0.3723 108 2.10E-10 R.FGGNPGGFGNQGGFGNSR.G
10689 276 293 576.141 1725.4011 1726.7448 −1.3437 45 0.00089 R.FGGNPGGFG*NQGGFGNSR.G
10714 276 293 864.5613 1727.1081 1727.7288 −0.6207 103 1.20E-09 R.FGGN*PGGFGNQGGFGN*SR.G
fraction5 chymotrypsin              
3922 114 123 418.5765 1252.7075 1253.6139 −0.9064 38 0.0024 W.KTTEQDLKEY.F
5597 300 313 489.2062 1464.5969 1466.4479 −1.851 24 0.061 L.GN*N*QGS*N*MGGGMNF.G
1088 330 336 413.0149 824.0152 823.3534 0.6618 22 0.018 A.LQSSWGMo.M
8438 386 405 658.5479 1972.6219 1974.5894 −1.9675 32 0.014 W.GSASNAGSGSpGFNGGFGSpSpM.D
  trypsin                
15330 56 79 875.8154 2624.4245 2623.3799 1.0446 40 0.00088 R.LVEGILHAPDAGWGNLVYVVNYPK.D
15331 56 79 875.8346 2624.4819 2623.3799 1.1021 34 0.0077 R.LVEGILHAPDAGWGNLVYVVNYPK.D
5230 84 95 641.4845 1280.9544 1280.5918 0.3626 56 2.70E-05 R.KMDETDASSAVK.V
5232 84 95 641.5112 1281.0078 1280.5918 0.416 51 4.20E-05 R.KMDETDASSAVK.V
3945 85 95 576.9318 1151.8491 1152.4969 −0.6478 44 0.00018 K.MDETDASSAVK.V
3952 85 95 577.0027 1151.9908 1152.4969 −0.506 26 0.0054 K.MDETDASSAVK.V
3958 85 95 577.0422 1152.0699 1152.4969 −0.4269 50 1.90E-05 K.MDETDASSAVK.V
3980 85 95 577.1116 1152.2086 1152.4969 −0.2883 31 0.004 K.MDETDASSAVK.V
3983 85 95 577.1158 1152.217 1152.4969 −0.2798 18 0.021 K.MDETDASSAVK.V
3990 85 95 577.1333 1152.252 1152.4969 −0.2448 23 0.057 K.MDETDASSAVK.V
4006 85 95 577.1882 1152.3619 1152.4969 −0.1349 25 0.0043 K.MDETDASSAVK.V
4007 85 95 577.1957 1152.3768 1152.4969 −0.12 30 0.0024 K.MDETDASSAVK.V
4013 85 95 577.2638 1152.513 1152.4969 0.0162 44 7.80E-05 K.MDETDASSAVK.V
4018 85 95 577.4311 1152.8476 1152.4969 0.3508 35 0.0031 K.MDETDASSAVK.V
4021 85 95 577.4545 1152.8944 1152.4969 0.3975 52 2.40E-05 K.MDETDASSAVK.V
4030 85 95 578.0698 1154.125 1152.4969 1.6281 33 0.0017 K.MDETDASSAVK.V
4093 85 95 585.0585 1168.1024 1168.4918 −0.3894 27 0.0031 K.MoDETDASSAVK.V
4097 85 95 585.7054 1169.3962 1168.4918 0.9044 24 0.0053 K.MoDETDASSAVK.V
6018 103 114 671.1033 1340.192 1340.7704 −0.5784 37 0.00067 K.TSDLIVLGLPWK.T
3868 152 160 573.0732 1144.1318 1143.5448 0.587 30 0.0028 R.FTEYETQVK.V
2331 182 189 486.4414 970.8682 971.4672 −0.599 25 0.031 K.QSQDEPLR.S
2334 182 189 486.5248 971.035 971.4672 −0.4322 25 0.017 K.QSQDEPLR.S
2345 182 189 487.3027 972.5909 971.4672 1.1237 26 0.013 K.QSQDEPLR.S
10280 276 293 864.1884 1726.3621 1725.7608 0.6013 106 3.40E-10 R.FGGNPGGFGNQGGFGNSR.G
10284 276 293 576.4902 1726.4489 1726.7448 −0.296 29 0.028 R.FGGNPGGFGNQ*GGFGNSR.G
10291 276 293 864.5842 1727.1539 1726.7448 0.4091 90 2.20E-08 R.FGGNPGGFGNQGGFGN*SR.G
fravtion6 chymotrypsin              
3105 277 289 583.4806 1164.9467 1164.4949 0.4519 25 0.0045 F.GGNPGGFGNQGGF.G
8141 298 315 594.347 1780.0191 1778.6389 1.3802 32 0.015 A.GLGNNQGSpN*MoGGGMNFGA.F
7563 300 316 565.4505 1693.3297 1693.5985 −0.2688 29 0.031 L.GN*N*QGSNMoGGGMoN*FGAF.S
5625 317 330 486.4602 1456.3588 1455.6138 0.7449 18 0.041 F.SpIN*PAMoMAAAQAAL.Q
  trypsin                
4254 103 114 671.3554 1340.6963 1340.7704 −0.0741 36 0.00083 K.TSDLIVLGLPWK.T
7335 276 293 864.0093 1726.004 1725.7608 0.2432 65 2.40E-06 R.FGGNPGGFGNQGGFGNSR.G
7340 276 293 864.1556 1726.2966 1726.7448 −0.4482 87 4.90E-08 R.FGGNPGGFGN*QGGFGNSR.G
fraction7 chymotrypsin              
4017 277 289 583.4226 1164.8307 1164.4949 0.3358 32 0.001 F.GGNPGGFGNQGGF.G
8195 375 391 579.1056 1734.2949 1733.5372 0.7577 20 0.095 Y.SpGSN*SGAAIGWGSpASpNA.G
6844 389 404 516.8932 1547.6579 1548.492 −0.834 23 0.065 A.SpNAGSGSGFNGGFGSSp.M
9620 389 409 673.531 2017.5712 2017.7361 −0.1649 20 0.078 A.SN*AGSGSGFNGGFGSSpMDSKS.S
  trypsin                
7417 103 114 671.6024 1341.1903 1340.7704 0.4199 39 0.00022 K.TSDLIVLGLPWK.T
10947 276 293 864.018 1726.0215 1725.7608 0.2606 108 3.50E-10 R.FGGNPGGFGNQGGFGNSR.G
fraction8 chymotrypsin              
      not detected            
  trypsin                
4254 103 114 671.3554 1340.6963 1340.7704 −0.0741 36 0.00083 K.TSDLIVLGLPWK.T
7335 276 293 864.0093 1726.004 1725.7608 0.2432 65 2.40E-06 R.FGGNPGGFGNQGGFGNSR.G
7340 276 293 864.1556 1726.2966 1726.7448 −0.4482 87 4.90E-08 R.FGGNPGGFGN*QGGFGNSR.G

p indicates phosphorylation site; o indicates oxidation site; * indicates deamidation site.

Table 2. List of identifid peptides derived from accumulated TDP-43 in ALS patient case 2.

Query Start End Observed Mr(expt) Mr(calc) Delta Score Expect Peptide
fraction1 chymotrypsin              
4855 215 226 683.3186 1364.6226 1363.6846 0.938 17 0.066 Y.GDVMDVFIPKPF.R
20958 290 313 738.3618 2212.0636 2210.9182 1.1455 28 0.0071 F.GNSRGGGAGLGNNQ*GSNMGGGMNF.G
21027 300 321 742.2366 2223.6879 2222.8398 0.8481 27 0.048 L.GNNQGSpN*MGGGMN*FGAFSINPA.M
21271 316 336 771.2789 2310.815 2311.92 −1.1051 29 0.064 A.FSIN*PAMoMoAAAQAALQSSpWGMo.M
17965 322 336 556.6434 1666.9085 1666.6078 0.3007 26 0.056 A.MMoAAAQ*AALQ*SSpWGMo.M
10760 389 398 489.2573 976.5 978.2968 −1.7968 23 0.057 A.SpN*AGSGSGFN*.G
10762 389 398 489.3521 976.6897 978.2968 −1.6071 22 0.064 A.SpN*AGSGSGFN*.G
  trypsin                
24329 228 251 898.5277 2692.5613 2694.2652 −1.7039 38 0.0016 R.AFAFVTFADDQIAQS þ LCGEDLIIK.G
12874 252 263 627.0836 1252.1527 1250.6619 1.4908 46 7.90E-05 K.GISVHISNAEPK.H
19990 276 293 863.7753 1725.5361 1725.7608 −0.2247 103 1.50E-09 R.FGGNPGGFGNQGGFGNSR.G
20016 276 293 864.1752 1726.3359 1725.7608 0.5751 121 5.20E-12 R.FGGNPGGFGNQGGFGNSR.G
20030 276 293 864.5692 1727.1239 1725.7608 1.3631 100 1.30E-09 R.FGGNPGGFGNQGGFGNSR.G
fraction2 chymotrypsin              
14560 76 85 725.5255 1449.0365 1448.7194 0.3171 23 0.0065 V.NYPKgDNKaRKM.D
18417 290 311 684.6705 2050.9898 2049.7041 1.2857 22 0.096 F.GN*SpRGGGAGLGN*N*Q*GSN*MoGGGM.N
15143 382 397 502.4551 1504.3433 1504.5984 −0.2551 18 0.065 A.AIGWGSASNAGSpGSGF.N
17655 389 405 615.114 1842.3202 1840.4491 1.8711 30 0.024 A.SpN*AGSpGSpGFNGGFGSSpM.D
12347 398 408 421.6983 1262.0732 1261.3723 0.7008 23 0.078 F.NGGFGSSpMoDSpK.S
14828 398 411 738.5961 1475.1776 1476.463 −1.2854 17 0.045 F.NGGFGS.pSMDSKSpSG.W
  trypsin                
9063 76 82 439.4402 876.8658 877.4294 −0.5635 21 0.065 V.NYPKDNK.R
12273 152 160 572.6329 1143.2513 1143.5448 −0.2935 24 0.0066 R.FTEYETQVK.V
13442 252 263 626.5903 1251.166 1250.6619 0.5041 60 2.20E-06 K.GISVHISNAEPK.H
18848 276 293 864.1686 1726.3226 1726.7448 −0.4222 100 2.80E-09 R.FGGNPGGFGNQGGFGN*SR.G
18879 276 293 865.5833 1729.1519 1727.7288 1.4231 92 2.30E-09 R.FGGNPGGFGN*QGGFGN*SR.G
14839 280 293 676.5123 1351.0101 1350.6065 0.4036 75 9.00E-08 N.PGGFGNQGGFGNSR.G
14842 280 293 676.5812 1351.1478 1350.6065 0.5413 46 0.00033 N.PGGFGNQGGFGNSR.G
14844 280 293 676.6381 1351.2617 1350.6065 0.6552 64 2.80E-06 N.PGGFGNQGGFGNSR.G
14837 280 293 676.4991 1350.9837 1351.5905 −0.6068 33 0.0068 N.PGGFGN*QGGFGNSR.G
fraction3 chymotrypsin              
19885 212 226 880.3099 1758.6053 1757.8335 0.7718 22 0.0093 F.SQYGDVMoDVFIPKPF.R
15096 215 226 683.6068 1365.1989 1363.6846 1.5143 34 0.00061 Y.GDVMDVFIPKPF.R
4235 230 234 584.3881 583.3808 583.3006 0.0802 26 0.0086 F.AFVTF.A
4246 230 234 584.5333 583.5261 583.3006 0.2254 26 0.0084 F.AFVTF.A
18976 290 307 831.7477 1661.4809 1662.7128 −1.2319 40 0.00047 F.GNSRGGGAGLGNNQGSNMo.G
21767 290 313 748.6056 2242.7949 2242.908 −0.1131 36 0.0087 F.GNSRGGGAGLGNNQGSNMoGGGMoNF.G
20036 298 315 594.1538 1779.4396 1780.607 −1.1674 26 0.065 A.GLGNN*Q*GSpN*MoGGGMNFGA.F
19286 300 316 564.2299 1689.6679 1691.6304 −1.9625 23 0.057 L.GNNQGSNMoGGGMoN*FGAF.S
19330 300 316 565.4157 1693.2251 1691.6304 1.5947 22 0.032 L.GNNQGSNMoGGGMoN*FGAF.S
21702 300 321 741.259 2220.7553 2220.8718 −0.1165 20 0.068 L.GNNQGSpNMGGGMNFGAFSINPA.M
21046 341 359 654.4437 1960.3094 1960.7929 −0.4836 58 3.10E-05 L.ASQQNQSGPSGNNQNQ*GNM.Q
20839 386 405 633.3611 1897.0616 1895.6071 1.4546 27 0.062 W.GSASpN*AGSpGSGFNGGFGSSM.D
21630 389 411 727.5361 2179.5866 2177.7845 1.8021 32 0.027 A.SNAGSpGSGFN*GGFGSSMoDSKSSG.W
  trypsin                
21995 209 227 774.8737 2321.5992 2321.1191 0.4801 39 0.0013 R.EFFSQYGDVMDVFIPKPFR
22343 228 251 898.5321 2692.5745 2694.2652 −1.6907 45 0.0003 R.AFAFVTFADDQIAQSpLCGEDLIIK.G
13384 252 263 625.472 1248.9294 1250.6619 −1.7325 27 0.0032 K.GISVHISNAEPK.H
13416 252 263 626.5458 1251.077 1250.6619 0.4151 28 0.0078 K.GISVHISNAEPK.H
13418 252 263 626.6263 1251.238 1250.6619 0.5761 48 6.10E-05 K.GISVHISNAEPK.H
19580 276 293 864.1287 1726.2429 1725.7608 0.4821 102 5.50E-10 R.FGGNPGGFGNQGGFGNSR.G
19582 276 293 864.1488 1726.283 1725.7608 0.5222 122 6.00E-12 R.FGGNPGGFGNQGGFGNSR.G
19600 276 293 865.1992 1728.3839 1728.7128 −0.329 28 0.036 R.FGGN*PGGFGNQ*GGFGN*SR.G
19637 276 293 866.3511 1730.6877 1728.7128 1.9749 75 9.20E-08 R.FGGN*PGGFGN*QGGFGN*SR.G
fraction4 chymotrypsin              
15701 215 226 683.5077 1365.0008 1363.6846 1.3162 34 0.0018 Y.GDVMDVFIPKPF.R
15928 317 330 689.0359 1376.0573 1375.6475 0.4098 27 0.0096 F.SIN*PAMMoAAAQAAL.Q
21325 324 339 581.5296 1741.567 1739.6242 1.9428 19 0.085 M.AAAQAALQ*SSpWGMoMoGMo.L
  trypsin                
14177 252 263 627.0461 1252.0777 1251.6459 0.4318 35 0.0051 K.GISVHISN*AEPK.H
23138 273 293 676.4238 2026.2497 2025.9154 0.3342 47 0.00016 R.SGRFGGNPGGFGNQGGFGNSR.G
20999 276 293 863.697 1725.3794 1725.7608 −0.3815 105 8.20E-10 R.FGGNPGGFGNQGGFGNSR.G
21025 276 293 864.4716 1726.9286 1725.7608 1.1678 104 2.90E-10 R.FGGNPGGFGNQGGFGNSR.G
fraction5 chymotrypsin              
7104 109 113 585.5835 584.5762 584.3322 0.244 26 0.0077 V.LGLPW.K
11793 131 139 537.3479 1072.6812 1072.6314 0.0498 31 0.011 V.LMVQVKKDL.K
7071 230 234 583.6779 582.6706 583.3006 −0.63 26 0.0074 F.AFVTF.A
7086 230 234 584.4906 583.4833 583.3006 0.1827 26 0.0072 F.AFVTF.A
12944 277 289 583.3265 1164.6384 1164.4949 0.1435 27 0.0028 F.GGNPGGFGNQGGF.G
15760 298 311 696.9571 1391.8996 1391.437 0.4626 25 0.055 A.GLGNN*Q*GSpN*MGGGM.N
20561 298 316 649.7761 1946.3065 1944.6543 1.6522 25 0.051 A.GLGN*N*Q*GSpN*MoGGGMoNFGAF.S
22061 314 337 863.6423 2587.905 2586.03 1.875 33 0.0056 F.GAFSpINPAMoMoAAAQ*AALQSSWGMoMo.G
12943 375 385 583.3155 1164.6164 1165.3842 −0.7678 19 0.078 Y.SpGSNSpGAAIGW.G
22006 375 400 845.8151 2534.4234 2532.8023 1.6211 27 0.061 Y.SGSNSpGAAIGWGSpASpNAGSpGSGFNGG.F
11997 389 400 546.7824 1091.5503 1092.3397 −0.7894 22 0.088 A.SN*AGSpGSGFN*GG.F
  trypsin                
12956 152 160 572.6786 1143.3427 1143.5448 −0.2021 36 0.0034 R.FTEYETQVK.V
21351 209 227 775.3962 2323.1669 2322.1031 1.0638 17 0.069 R.EFFSQ*YGDVMDVFIPKPFR.A
14102 252 263 626.5144 1251.0142 1250.6619 0.3524 39 0.00022 K.GISVHISNAEPK.H
18594 276 293 863.6197 1725.2249 1725.7608 −0.5359 107 1.10E-10 R.FGGNPGGFGNQGGFGNSR.G
fraction6 chymotrypsin              
23141 290 321 1054.8215 3161.4428 3162.1846 −0.7418 22 8.20E-02 F.GNSpRGGGAGLGN*N*Q*GSNMoGGGMoNFGAFSpINPA.M
22697 297 322 897.8206 2690.4399 2689.0162 1.4237 23 5.50E-02 G.AGLGNNQGSpNMGGGMNFGAFSpINPAMo.M
19240 300 318 659.1209 1974.3407 1972.6969 1.6439 28 2.10E-02 L.GNNQ*GSpN*MoGGGMoNFGAFSI.N
22742 316 340 905.2916 2712.8529 2712.1167 0.7362 29 7.80E-02 A.FSINPAMMAAAQ*AALQ*SpSWGMoMGML.A
13426 317 330 481.3466 1441.0179 1439.6189 1.3989 21 4.30E-02 F.SpINPAMMAAAQ*AAL.Q
10747 330 340 425.4213 1273.2422 1272.5189 0.7233 26 3.30E-02 A.LQ*SSWGMMoGMoL.A
16711 388 404 567.5427 1699.6063 1700.4794 −0.8731 18 9.80E-02 S.ASpN*AGSGSGFNGGFGSpSp.M
  trypsin                
8983 182 189 486.6083 971.2021 971.4672 −0.2651 36 2.70E-03 K.QSQDEPLR.S
12216 252 263 626.5559 1251.0973 1250.6619 0.4354 57 4.20E-06 K.GISVHISNAEPK.H
17819 276 293 863.6684 1725.3222 1725.7608 −0.4386 123 7.00E-12 R.FGGNPGGFGNQGGFGNSR.G
fraction7 chymotrypsin              
14499 56 68 689.5842 1377.1539 1376.7088 0.4451 56 9.80E-06 R.LVEGILHAPDAGW.G
18452 56 71 831.8374 1661.6602 1660.8573 0.8029 40 0.0006 R.LVEGILHAPDAGWGNL.V
3963 230 234 584.48 583.4727 583.3006 0.1721 26 0.0072 F.AFVTF.A
15174 368 381 474.0898 1419.2475 1418.4024 0.8451 33 0.0091 F.GSpGNN*SpYSGSNSGA.A
  trypsin                
21694 56 79 876.0681 2625.1825 2624.3639 0.8186 61 7.10E-06 R.LVEGILHAPDAGWGN*LVYVVNYPK.D
10852 84 95 641.5242 1281.0338 1280.5918 0.442 70 1.10E-06 R.KMDETDASSAVK.V
11727 103 114 671.4896 1340.9647 1340.7704 0.1943 38 0.00025 K.TSDLIVLGLPWK.T
17298 122 136 889.2975 1776.5804 1775.8804 0.7 69 1.90E-06 K.EYFSTFGEVLMVQVK.K
8866 152 160 573.5646 1145.1147 1143.5448 1.5699 26 0.0039 R.FTEYETQVK.V
10398 252 263 626.6704 1251.3263 1250.6619 0.6644 37 0.0007 K.GISVHISNAEPK.H

p indicates phosphorylation site; o indicates oxidation site; * indicates deamidation site; a indicates acetylation site; g indicates ubiqutination site.

Figure 2. MS/MS identification of phosphorylated peptides and cleavage site peptides.

Figure 2

Representative peptides were shown. (A) Chymotriptic peptide, 398-NGGFGSSM-405 in case 1. The 6th Ser residue was phosphorylated. (B)Triptic peptide, 56-LVEGILHAPDAGWGNLVYVVNYPK-79 in case 1. (C) Tryptic peptide, 215- GDVMDVFIPKPFR-227 in case 1. Trypsin can not cleave N-terminal Tyr214-Gly215 site. Therefore this site is intrinsically cleaved site. (D) Chymotryptic peptide, 56-LVEGILHAPDAGW-68 in case 2. Chymotrypsin can not cleave N-terminal Arg55-Leu56 site. Therefore this site is intrinsically cleaved site.

Figure 3.

Figure 3

Identification of modification sites in TDP-43 from ALS case 1 (A) and case 2 (B) by LC-MS/MS analysis. Identified peptides from trypsin digestion (light green) and from chymotrypsin digestion (dark green) are shown. p indicates phosphorylation site. o indicates oxidation site. * indicates deamidation site. Blue and pink arrows indicate N-terminal and C-terminal cleavage sites, respectively.

Analysis of Case 1

We identified at least four intrinsically cleaved TDP-43 peptides in the pathological TDP-43, i.e., three N-terminal peptides (blue arrows, Fig. 3A) and one C-terminal peptide (pink arrow). However, no caspase-cleaved peptides were detected in this study (Table 3). Ten serine residues were phosphorylated, as shown in Fig. 3A and Table 4. These phosphorylation sites were the same sites as previously reported27,38. Furthermore, deaminations of Asn and Gln residues and oxidation of Met residues were identified. Almost all modification sites were found in the Gly-rich C-terminal half.

Table 3. N-terminal sequences of abnormally accumulated TDP-43 fragments in human brain.

Disease Molecular weight Sequence Reference
ALS 45kDa 56-LVEGILHA-- this study
  43kDa 56-LVEGILHA--  
  30–35kDa 109-LGLPWK  
    131-LMVQVKK  
  23–25 kDa 176-KLPNSKQ--  
    215-GDVMDVF--  
    280-PGGFGNQ--  
  15–20 kDa 76-NYPKDNK--  
    215-GDVMDVF--  
FTLD-U 23–25 kDa 219-DVFIPKPF-- Nonaka et al.47
    247-DLIIKGI--  
FTLD-U 22 kDa 208-REFFSQY-- Igaz et al.44

Table 4. List of modifications in cases 1 and 2.

Residue Amino acid Modification Case1 Case2
70 Asparagine deamidation O O
76 Asparagine deamidation O  
79 Lysine ubiquitination   O
82 Lysine acetylation   O
85 Methionine oxidation O  
162 Methionine oxidation O  
179 Asparagine deamidation O  
213 Glutamine deamidation O O
218 Methionine oxidation O O
242 Serine phosphorylation O O
259 Asparagine deamidation O O
279 Asparagine deamidation O O
285 Asparagine deamidation O O
286 Glutamine deamidation O O
291 Asparagine deamidation O O
292 Serine phosphorylation   O
301 Asparagine deamidation O O
302 Asparagine deamidation O O
303 Glutamine deamidation O O
305 Serine phosphorylation O O
306 Asparagine deamidation O O
307 Methionine oxidation O O
311 Methionine oxidation O O
312 Asparagine deamidation O O
317 Serine phosphorylation O O
319 Asparagine deamidation O O
322 Methionine oxidation O O
323 Methionine oxidation O O
327 Glutamine deamidation O O
331 Glutamine deamidation   O
332 Serine phosphorylation   O
333 Serine phosphorylation   O
336 Methionine oxidation O O
337 Methionine oxidation   O
339 Methionine oxidation   O
346 Glutamine deamidation O  
352 Asparagine deamidation O  
353 Asparagine deamidation O  
354 Glutamine deamidation O  
355 Asparagine deamidation O  
356 Glutamine deamidation O O
358 Asparagine deamidation O  
359 Methionine oxidation O  
366 Glutamine deamidation O  
372 Asparagine deamidation   O
373 Serine phosphorylation   O
375 Serine phosphorylation O O
378 Asparagine deamidation O  
379 Serine phosphorylation   O
387 Serine phosphorylation O O
389 Serine phosphorylation O O
390 Asparagine deamidation   O
393 Serine phosphorylation O O
395 Serine phosphorylation O O
398 Asparagine deamidation O O
403 Serine phosphorylation O  
404 Serine phosphorylation O O
405 Methionine oxidation O O
407 Serine phosphorylation   O
409 Serine phosphorylation   O

Analysis of Case 2

We identified six intrinsically cleaved TDP-43 peptides in this case, i.e., five N-terminal peptides (blue arrows, Fig. 3B) and one C-terminal peptide (pink arrow). As shown in Fig. 3B and Table 4, 15 serine residues were phosphorylated and 21 Asn/Gln residues were deamidated. Moreover, we found that the 79Lys residue was ubiquitinated and 82Lys was acetylated. However, 145Lys and 192Lys were not detected39. Phosphorylation sites were the same sites as previously reported27,38. Again, almost all of these modification sites were localized in the Gly-rich C-terminal half.

Common modifications in cases 1 and 2

All modifications are summarized in Table 4. As described above, almost all modifications were localized in the Gly-rich C-terminal half. Furthermore, common modifications focused on 180–330 residues region of these cases, suggesting that the 180–330 region of TDP-43 had the same structure in both case 1 and case 2.

Discussion

Accumulation of filamentous inclusions composed of abnormally phosphorylated full-length TDP-43 (45 kDa) and its fragments (35 and 17–27 kDa) is a defining feature of TDP-43 proteinopathies26. It has been reported that overexpression of full-length TDP-43 with or without mutations in cultured cells and animals leads to fragmentation of the protein, generating 35-kDa (CTF-35) and 25-kDa (CTF-25) C-terminal fragments via caspase-mediated TDP-43 cleavage30,34,40. Furthermore, activation of calpain, a Ca2+-dependent cysteine protease, by upregulation of Ca2+-permeable AMPA receptors generates C-terminally cleaved TDP-43 fragments (~35 kDa) and causes mislocalization of TDP-43 in motor neurons36. Those reports noted that the ~35 kDa fragments were localized in the cytoplasm and formed insoluble aggregates.

However, no such TDP-43 peptides cleaved by caspase or calpain reported were not detected in the pathological TDP-43 in the brains of patients in this study. On the other hand, uncleaved peptides by caspase or calpain were detected as the major molecules in the digests. Furthermore, several novel intrinsically cleaved TDP-43 peptides were identified in the pathological TDP-43, i.e., three and five N-terminal peptides (Cys164-Lys165, Tyr214-Gly215 and Asn279-Pro280 in case 1, and Arg55-Leu56, Val75-Asn76, Val108-Leu109, Val130-Leu131 and Asn279-Pro280 in case 2) (Figs 3A,B and 4 and Table 3) and two C-terminal peptide (Asn291-Ser292 in case 1 and Gly400-Phe401 in case 2) (Figs 3A,B and 4), strongly suggested that these cleaved fragments under pathological conditions was different from that under TDP-43-overexpressing conditions.

Figure 4. Schematic representation of N-terminal and C-terminal cleavage sites on TDP-43.

Figure 4

Cleavage sites (amino acid numbering of TDP-43) in gel fractions and antibodies recognition sites were shown.

Cellular expression of TDP-43 is tightly regulated at the transcriptional and post-translational levels. Under pathological conditions, however, formation of TDP-43 aggregates within the cell nucleus or cytoplasm results in reduced free nuclear TDP-43, and therefore the TDP-43 binding-receptor sensor detects a fall in protein levels and responds with increased TDP-43 production; the produced TDP-43 is then sequestered by TDP-43 aggregates2. Hence, TDP-43 production under pathological conditions does not necessarily represent overexpression. It is possible that TDP-43 aggregate formation under pathological conditions is different from that under TDP-43-overexpressing conditions.

It has been recently reported that C9ORF72 repeat expansions in mice cause TDP-43 pathology. In these mice, insoluble phosphorylated TDP-43 was predominantly present in monomeric form and high-molecular-weight or truncated pTDP-43 species were not detected41. Further, recombinant full-length human TDP-43 forms structurally stable, spherical oligomers that are neurotoxic in vitro and in vivo42. Indeed, cellular aggregate formation or accumulation of TDP-43 C-terminal fragments (CTFs) is not primarily responsible for development of the observed disease phenotype in mutant or wild-type TDP-43 mice43,44,45. These findings suggest that full-length TDP-43, not the cleavage fragments, participates at an early stage in TDP-43 pathology. Fragmentation may occur after the accumulation of TDP-43.

We identified some intrinsically cleaved TDP-43 peptides at the N-terminus and C-terminus of Sarkosyl-insoluble TDP-43 in this study. These cleavage sites were neither the caspase cleavage sites nor the calpain cleavage sites of TDP-43 as reported previously46,47. Several cleavage sites deduced from these N-terminal peptides exist in the region of residues 55–280 as shown in Table 3 and Fig. 4. Therefore, full-length TDP-43 may be gradually processed at N-terminal sites after the formation of insoluble aggregates as shown in Fig. 4. Our findings that cleavage site is correlated with the distribution of molecular weight size are consistent with this idea. Further studies using antibodies for these cleavage sites will clarify the gradual processing mechanism.

In our previous studies, we identified phosphorylation sites by immunochemical methods27 and also identified casein kinase-1 phosphorylation sites on recombinant TDP-43 38. Almost all Ser and Thr residues in C-terminal Gly-rich half were able to be phosphorylated in vitro experiment38. In the present work, however, a part of accumulated TDP-43 was phosphorylated, not all. Non-phosphorylated peptides were major products from aggregated TDP-43 digests from these ALS brains. We protein-chemically identified several novel phosphorylation sites by directly analyzing the accumulated TDP-43 from two ALS patients. Phosphorylation sites identified in case 1 and case 2 corresponded to the sites identified in casein kinase-1 phosphorylated TDP-43. Although 9 phosphorylation sites were common to both cases, more phosphorylation sites were identified in case 2, as shown in Fig. 3A,B.

It has known that non-phosphorylated intact TDP-43 forms fibrous aggregate42, suggesting abnormal phosphorylation is not first event in TDP-43 pathology. The level of phosphorylation may change according to the time when TDP-43 aggregates exist in cytoplasm. Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important signaling processes. Phosphorylation of TDP-43 may occur in elimination process. The impairment of this process due to TDP-43 aggregation will induce abnormal phosphorylation of TDP-43 aggregate. As the time has passed, the level of phosphorylation seems to become more. Therefore, the individual difference may occur in the level of phosphorylation.

Furthermore, it seems reasonable to speculate that heavily phosphorylated peptides may not be detected because of low recovery from the column and low ionization efficiency in mass analysis. S409/S410-phosphorylated TDP-43 was immunochemically included in almost all fractions as shown in Fig. 1. However, we found small amount of peptide including S409 with phosphorylation in case 2, while we found no peptide S409/S410 with phosphorylation in case1. A peptide including S409/S410, which derived from chymotrypsin digestion, has at least 5 phosphorylation sites. We have already reported that TDP-43 C-terminal region including these phosphorylation sites was heavily phosphorylated26,27,32. Therefore, we might not detect C-terminal region peptide including S409/S410 residues. It is possible that there are some differences in phosphorylation states of accumulated TDP-43 and in the detection efficiency in the mass analysis between the cases.

Indeed, there were individual differences in other modifications, as shown in Fig. 3A,B. However, we found that common modifications in case 1 and case 2 were focused in the 180–330 region (Fig. 3A,B, and Table 4). This suggests that the 180–330 region of TDP-43 had the same structure in both case 1 and case 2.

Interestingly, inclusions within the brain of ALS and FTLD-TDP patients are readily labelled with antibodies that recognize the C-terminus of TDP-43, but not with N-terminal TDP-43 antibodies. In contrast, spinal cord inclusions are labelled with both N- and C-terminal TDP-43 antibodies, suggesting that they are composed of full-length TDP-43 48. This regional heterogeneity in terms of C-terminal fragment formation suggests that these fragments may not be necessary for TDP43-mediated neurodegeneration49. Furthermore, TDP-43 fragments generated during neurodegeneration were not C-terminal fragments, but rather were derived from a central portion of human TDP-43 45. These results indicate that a common structure region, residues 180–330 of TDP-43, is significant for neurodegeneration

It has already reported that a Gly-rich region (287–322), which contains multiple glycine repeats, may contribute significantly to fiber formation as well as aggregation propensity50,51. Recently, it has also been reported that the 274–414 GQN-rich region (C-terminal region) has prion-like properties33,35, and that RRM2 domain of TDP-43 plays a key role in forming proteinaceous aggregates52. The common structure region, residues 180–330 of TDP-43, includes RRM2 and a part of the GQN-rich region. Therefore, this common structure region may be the core region of TDP-43 aggregates. The identification of N-terminal and C-terminal peptides in this study suggests that most of the cleavage sites exist in the N-terminal and C-terminal non-core regions. Proteolytic enzymes may readily access these regions and cleavage may occur gradually from distal regions. Our data provide important insight into the mechanism of TDP-43 accumulation, though further studies will be needed to clarify the molecular pathology of TDP-43 in detail.

Methods

Fractionation of accumulated TDP-43 in ALS brain

Sarkosyl-insoluble abnormal TDP-43 was prepared from brains of two ALS cases with abundant and widespread TDP-43 pathologies. Brain samples (0.5 g) from patients with ALS (case 1, 77-year-old male, disease duration 2.5 years and case 2, 57-year-old female, disease duration 2 years) and from vascular dementia (disease control, 88-year-old female) were homogenized in 10 ml of homogenization buffer (10 mM Tris–HCl, pH 7.5, containing 0.8 M NaCl, 1 mM EGTA, 1 mM dithiothreitol). Sarkosyl was added to the homogenates (final concentration: 2%), which were then incubated for 30 min at 37 °C and centrifuged at 20,000 g for 10 min at 25 °C. The supernatants were centrifuged at 100,000 g for 20 min at 25 °C. The pellets were further washed with sterile saline and centrifuged at 100,000 g for 20 min. The resulting pellets were used as Sarkosyl-insoluble fraction. This study was approved by the research ethics committee of Tokyo Metropolitan Institute of Medical Science (number: 15–5), and carried out in accordance with the approved guidelines. Informed consent about the brain donation was obtained from all subjects.

SDS-polyacrylamide gel electrophoresis (PAGE), immunoblotting and in-gel digestion

The Sarkosyl-insoluble, SDS/urea-soluble fractions were separated on 4 ~ 20% polyacrylamide gradient gels by SDS-PAGE and immunochemically detected as described26. Briefly, for immunoblotting, mAb anti-TDP-43 (60019-2-Ig, 1:3000, ProteinTech Group), polyclonal anti-TDP (10782-1-AP, 1:3000, ProteinTech Group) and pS409/410 (rabbit polyclonal, 1:1000) were used. Bands of TDP-43 and its derivatives were excised and soaked in 50 mM Tris-HCl, pH 8.0, containing 50% acetonitrile for 30 min. The gel was dried in a Speed-Vac (Savant) and incubated in 50 mM Tris-HCl, pH 8.0 containing 125–250 ng of modified trypsin (Roche Diagnostics, Mannheim, Germany) or chymotrypsin (Roche Diagnostics, Mannheim, Germany) at 37 °C for 6–20 hours. The digests were extracted from the gel twice with 100 μl of 0.1% TFA containing 60% acetonitrile. These two extracts were combined, evaporated in a Speed-Vac, and stored at −80 °C until assayed.

Nano-flow liquid chromatography-ion trap mass spectrometry (LC-MS/MS)

The sample was resuspended in 0.1% formic acid containing 2% acetonitrile and introduced into a nano-flow HPLC system, DiNa fitted with an automatic sampler (KYA Technology Corporation, Tokyo, Japan). A packed nano-capillary column NTCC-360/75-3-123 (0.075 mm I.D. ×125 mm L, particle diameter 3 μm, Nikkyo Technos Co., Ltd., Tokyo, Japan) was used at a flow rate of 300 nl / min with a 2–80% linear gradient of acetonitrile for 60 min. Eluted peptides were directly detected with an ion trap mass spectrometer, Velos Pro (Thermo Fisher Scientific Inc., Waltham, USA) at a spray voltage of 1.9 kV and a collision energy of 35%. The mass acquisition method consisted of one full MS survey scan followed by an MS/MS scan of the most abundant precursor ions from the survey scan. Dynamic exclusion for the MS/MS was set to 30 seconds. An MS scan range of 400–2000 m/z was employed in the positive ion mode, followed by data-dependent MS/MS using the CID or HCD operating mode on the top 10 ions in order of abundance. The data were analyzed with Proteome Discoverer (Thermo Fisher Scientific Inc., Waltham, USA), Mascot software (Matrix Science Inc., Boston, USA) and Scaffold software (Proteome Software, Inc., Oregon, USA). Swiss prot and GenBank databases were used.

Additional Information

How to cite this article: Kametani, F. et al. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci. Rep. 6, 23281; doi: 10.1038/srep23281 (2016).

Supplementary Material

Supplementary Information
srep23281-s1.pdf (860.1KB, pdf)

Acknowledgments

This work was supported by MEXT KAKENHI Grant Numbers 23228004, 26117005, 15H02356 (to M.H.) and MHLW Grant ID Number 12946221 (to M.H.)

Footnotes

Author Contributions All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: F.K. and M.H. Acquisition of data: F.K. and M.H. Analysis and interpretation of data: F.K. Drafting of the manuscript: F.K. Critical revision of the article for important intellectual content: M.H. Obtained funding: M.H. Material support: T.O., T.S., H.A., S.M., Y.S. and M.Y. Study supervision: M.H.

References

  1. Buratti E. et al. TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulatior exon 9 splicing. J. Biol. Chem. 280, 37572–37584, 10.1074/jbc.M505557200 (2005). [DOI] [PubMed] [Google Scholar]
  2. Baralle M., Buratti E. & Baralle F. E. The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochem Soc Trans 41, 1536–1540, 10.1042/bst20130186 (2013). [DOI] [PubMed] [Google Scholar]
  3. Ayala Y. M., Misteli T. & Baralle F. E. TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci USA 105, 3785–3789, 10.1073/pnas.0800546105 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ayala Y. M., Pagani F. & Baralle F. E. TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett 580, 1339–1344, 10.1016/j.febslet.2006.01.052 (2006). [DOI] [PubMed] [Google Scholar]
  5. Corrado L. et al. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Human Mutation 30, 688–694 (2009). [DOI] [PubMed] [Google Scholar]
  6. Buratti E. & Baralle F. E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13, 867–878 (2008). [DOI] [PubMed] [Google Scholar]
  7. Buratti E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20, 1774–1784, 10.1093/emboj/20.7.1774 (2001). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bose J. K., Wang I. F., Hung L., Tarn W.-Y. & Shen C. K. J. TDP-43 overexpression enhances exon-7 inclusion during SMN Pre-mRNA splicing. J. Biol. Chem. 283, 28852–28859, 10.1074/jbc.M805376200 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ou S. H., Wu F., Harrich D., Garcia-Martinez L. F. & Gaynor R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wang H.-Y., Wang I. F., Bose J. & Shen C. K. J. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130–139 (2004). [DOI] [PubMed] [Google Scholar]
  11. Wang I. F., Reddy N. M. & Shen C. K. Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci USA 99, 13583–13588, 10.1073/pnas.212483099 (2002). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sephton C. F. et al. TDP-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development. Journal of Biological Chemistry 285, 6826–6834, 10.1074/jbc.M109.061846 (2010). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wu L.-S. et al. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. genesis 48, 56–62, 10.1002/dvg.20584 (2010). [DOI] [PubMed] [Google Scholar]
  14. Neumann M. et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 314, 130–133, 10.1126/science.1134108 (2006). [DOI] [PubMed] [Google Scholar]
  15. Arai T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications 351, 602–611 (2006). [DOI] [PubMed] [Google Scholar]
  16. Yokota O. et al. Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy. Acta Neuropathol 120, 55–66, 10.1007/s00401-010-0702-1 (2010). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Arai T. et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117, 125–136, 10.1007/s00401-008-0480-1 (2009). [DOI] [PubMed] [Google Scholar]
  18. Hasegawa M. et al. TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130, 1386–1394, 10.1093/brain/awm065 (2007). [DOI] [PubMed] [Google Scholar]
  19. Tan C. F. et al. Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathol 118, 553–560, 10.1007/s00401-009-0552-x (2009). [DOI] [PubMed] [Google Scholar]
  20. Toyoshima Y. et al. Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol 122, 375–378, 10.1007/s00401-011-0862-7 (2011). [DOI] [PubMed] [Google Scholar]
  21. Kabashi E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40, 572–574 (2008). [DOI] [PubMed] [Google Scholar]
  22. Sreedharan J. et al. TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science 319, 1668–1672, 10.1126/science.1154584 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mackenzie I. R., Rademakers R. & Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9, 995–1007, 10.1016/S1474-4422(10)70195-2 (2010). [DOI] [PubMed] [Google Scholar]
  24. Tamaoka A. et al. TDP-43 M337V mutation in familial amyotrophic lateral sclerosis in Japan. Intern Med 49, 331–334 (2010). [DOI] [PubMed] [Google Scholar]
  25. Pesiridis G. S., Lee V. M. & Trojanowski J. Q. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18, R156–162, 10.1093/hmg/ddp303 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsuji H. et al. Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135, 3380–3391, 10.1093/brain/aws230 (2012). [DOI] [PubMed] [Google Scholar]
  27. Hasegawa M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Annals of Neurology 64, 60–70 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neumann M., Kwong L. K., Sampathu D. M., Trojanowski J. Q. & Lee V. M. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64, 1388–1394, 10.1001/archneur.64.10.1388 (2007). [DOI] [PubMed] [Google Scholar]
  29. Neumann M. et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 66, 152–157, 10.1097/nen.0b013e31803020b9 (2007). [DOI] [PubMed] [Google Scholar]
  30. Zhang Y. J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106, 7607–7612, 10.1073/pnas.0900688106 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hasegawa M. et al. Molecular analysis and biochemical classification of TDP-43 proteinopathy. Dementia and Geriatric Cognitive Disorders 33, 103–104 (2012). [Google Scholar]
  32. Inukai Y. et al. Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Letters 582, 2899–2904 (2008). [DOI] [PubMed] [Google Scholar]
  33. Nonaka T. et al. Prion-like Properties of Pathological TDP-43 Aggregates from Diseased Brains. Cell Reports 4, 124–134, 10.1016/j.celrep.2013.06.007 (2013). [DOI] [PubMed] [Google Scholar]
  34. Li Q., Yokoshi M., Okada H. & Kawahara Y. The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat Commun 6, 10.1038/ncomms7183 (2015). [DOI] [PubMed] [Google Scholar]
  35. Wang I. F. et al. The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat Commun 3, 766, 10.1038/ncomms1766 (2012). [DOI] [PubMed] [Google Scholar]
  36. Yamashita T. et al. A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 3, 1307, 10.1038/ncomms2303 (2012). [DOI] [PubMed] [Google Scholar]
  37. Aggad D., Vérièpe J., Tauffenberger A. & Parker J. A. TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. J Neurosci 34, 12093–12103, 10.1523/JNEUROSCI.2495-13.2014 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kametani F. et al. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochemical and Biophysical Research Communications 382, 405–409, 10.1016/j.bbrc.2009.03.038 (2009). [DOI] [PubMed] [Google Scholar]
  39. Cohen T. J. et al. An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 6, 10.1038/ncomms6845 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Suzuki H., Lee K. & Matsuoka M. TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 286, 13171–13183, 10.1074/jbc.M110.197483 (2011). [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Chew J. et al. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151–1154, 10.1126/science.aaa9344 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Fang Y. S. et al. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5, 4824, 10.1038/ncomms5824 (2014). [DOI] [PubMed] [Google Scholar]
  43. Janssens J. et al. Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol 48, 22–35, 10.1007/s12035-013-8427-5 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Igaz L. M. et al. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121, 726–738, 10.1172/JCI44867 (2011). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. D’Alton S. et al. Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling. PLoS ONE 9, e86513, 10.1371/journal.pone.0086513 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Igaz L. M. et al. Expression Of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J. Biol. Chem. 284, 8516-8524, M809462200, 10.1074/jbc.M809462200 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nonaka T., Kametani F., Arai T., Akiyama H. & Hasegawa M. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum. Mol. Genet. 18, 3353–3364, 10.1093/hmg/ddp275 (2009). [DOI] [PubMed] [Google Scholar]
  48. Igaz L. M. et al. Enrichment of C-Terminal Fragments in TAR DNA-Binding Protein-43 Cytoplasmic Inclusions in Brain but not in Spinal Cord of Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Am J Pathol 173, 182–194, 10.2353/ajpath.2008.080003 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lee E. B., Lee V. M. Y. & Trojanowski J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13, 38–50 (2012). [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Guo W. et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18, 822–830, 10.1038/nsmb.2053 (2011). [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Chen A. K. et al. Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J Am Chem Soc 132, 1186–1187, 10.1021/ja9066207 (2010). [DOI] [PubMed] [Google Scholar]
  52. Wang Y.-T. et al. The Truncated C-terminal RNA Recognition Motif of TDP-43 Protein Plays a Key Role in Forming Proteinaceous Aggregates. Journal of Biological Chemistry 288, 9049–9057, 10.1074/jbc.M112.438564 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Information
srep23281-s1.pdf (860.1KB, pdf)

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES