Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Oct;74(10):4228–4232. doi: 10.1073/pnas.74.10.4228

Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: Measurement of DNA-bound Escherichia coli lac repressor in vivo*

Ying Kao-Huang 1,2, Arnold Revzin 1,2,, Andrew P Butler 1,2,, Pamela O'Conner 1,2,§, Daniel W Noble 1,2, Peter H Von Hippel 1,2
PMCID: PMC431912  PMID: 412185

Abstract

Binding of genome regulatory proteins to nonspecific DNA sites may play an important role in controlling the thermodynamics and kinetics of the interactions of these proteins with their specific target DNA sequences. An estimate of the fraction of Escherichia coli lac repressor molecules bound in vivo to the operator region and to nonoperator sites on the E. coli chromosome is derived by measurement of the distribution of repressor between a minicell-producing E. coli strain (P678-54) and the DNA-free minicells derived therefrom. Assuming the minicell cytoplasm to be representative of that of the parent E. coli cells, we find that less than 10% of the repressor tetramers of the average cell are free in solution; the remainder are presumed to be bound to the bacterial chromosome. The minimum in vivo value of the association constant for repressor to bulk nonoperator DNA (KRD) calculated from these results is about 103 M-1, and analysis of the sources of error in the minicell experiment suggests that the actual in vivo value of KRD could be substantially greater. The value of KRD, coupled with in vitro data on the ionic strength dependence of this parameter, can be used to estimate that the effective intracellular cation activity of E. coli is no greater than about 0.24 M (and probably no less than 0.17 M) in terms of sodium ion equivalents. The minicell distribution experiments also confirm that the association constant for the binding of inducer-repressor complex to bulk nonoperator DNA (KRID) is [unk] KRDin vivo. These results are used to calculate minimum in vivo values of KRO and KRIO (association constants for repressor and for inducer-repressor complex binding to operator) of about 1012 M-1 and about 109 M-1, respectively. The results fit a quantitative model for operon regulation in which nonspecific DNA-repressor complexes play a key role in determining basal and constitutive levels of gene expression [von Hippel, P. H., Revzin, A., Gross, C. A. & Wang, A. C. (1974) Proc. Natl. Acad. Sci. USA 71, 4808-4812].

Keywords: minicells, repressor-DNA interactions, effective ion activity in E. coli, repressor-inducer-operator-DNA binding constants

Full text

PDF
4228

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler H. I., Fisher W. D., Cohen A., Hardigree A. A. MINIATURE escherichia coli CELLS DEFICIENT IN DNA. Proc Natl Acad Sci U S A. 1967 Feb;57(2):321–326. doi: 10.1073/pnas.57.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barkley M. D., Riggs A. D., Jobe A., Burgeois S. Interaction of effecting ligands with lac repressor and repressor-operator complex. Biochemistry. 1975 Apr 22;14(8):1700–1712. doi: 10.1021/bi00679a024. [DOI] [PubMed] [Google Scholar]
  3. Chamberlin M. J. The selectivity of transcription. Annu Rev Biochem. 1974;43(0):721–775. doi: 10.1146/annurev.bi.43.070174.003445. [DOI] [PubMed] [Google Scholar]
  4. Cohen A., Fisher W. D., Curtiss R., 3rd, Adler H. I. The properties of DNA transferred to minicells during conjugation. Cold Spring Harb Symp Quant Biol. 1968;33:635–641. doi: 10.1101/sqb.1968.033.01.071. [DOI] [PubMed] [Google Scholar]
  5. Dvorak H. F., Wetzel B. K., Heppel L. A. Biochemical and cytochemical evidence for the polar concentration of periplasmic enzymes in a "minicell" strain of Escherichia coli. J Bacteriol. 1970 Oct;104(1):543–548. doi: 10.1128/jb.104.1.543-548.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilbert W., Müller-Hill B. The lac operator is DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2415–2421. doi: 10.1073/pnas.58.6.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hinkle D. C., Chamberlin M. J. Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J Mol Biol. 1972 Sep 28;70(2):157–185. doi: 10.1016/0022-2836(72)90531-1. [DOI] [PubMed] [Google Scholar]
  8. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  9. Jobe A., Bourgeois S. lac Repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol. 1972 Aug 28;69(3):397–408. doi: 10.1016/0022-2836(72)90253-7. [DOI] [PubMed] [Google Scholar]
  10. Jobe A., Riggs A. D., Bourgeois S. Lac repressor-operator interaction. V. Characterization of super- and pseudo-wild-type repressors. J Mol Biol. 1972 Feb 28;64(1):181–199. doi: 10.1016/0022-2836(72)90328-2. [DOI] [PubMed] [Google Scholar]
  11. Khachatourians G. G., Saunders C. A. A new method for the preparation of minicells for physiological studies. Prep Biochem. 1973;3(3):291–298. doi: 10.1080/00327487308061513. [DOI] [PubMed] [Google Scholar]
  12. Kung F. C., Raymond J., Glaser D. A. Metal ion content of Escherichia coli versus cell age. J Bacteriol. 1976 Jun;126(3):1089–1095. doi: 10.1128/jb.126.3.1089-1095.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Levy S. B. Resistance of minicells to penicillin lysis: a method of obtaining large quantities of purified minicells. J Bacteriol. 1970 Sep;103(3):836–839. doi: 10.1128/jb.103.3.836-839.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin S. Y., Riggs A. D. Lac repressor binding to non-operator DNA: detailed studies and a comparison of eequilibrium and rate competition methods. J Mol Biol. 1972 Dec 30;72(3):671–690. doi: 10.1016/0022-2836(72)90184-2. [DOI] [PubMed] [Google Scholar]
  16. Lin S., Riggs A. D. The general affinity of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell. 1975 Feb;4(2):107–111. doi: 10.1016/0092-8674(75)90116-6. [DOI] [PubMed] [Google Scholar]
  17. Lusk J. E., Williams R. J., Kennedy E. P. Magnesium and the growth of Escherichia coli. J Biol Chem. 1968 May 25;243(10):2618–2624. [PubMed] [Google Scholar]
  18. Record M. T., Jr, Lohman M. L., De Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976 Oct 25;107(2):145–158. doi: 10.1016/s0022-2836(76)80023-x. [DOI] [PubMed] [Google Scholar]
  19. Riggs A. D., Bourgeois S., Newby R. F., Cohn M. DNA binding of the lac repressor. J Mol Biol. 1968 Jul 14;34(2):365–368. doi: 10.1016/0022-2836(68)90261-1. [DOI] [PubMed] [Google Scholar]
  20. Riggs A. D., Bourgeois S. On the assay, isolation and characterization of the lac repressor. J Mol Biol. 1968 Jul 14;34(2):361–364. doi: 10.1016/0022-2836(68)90260-x. [DOI] [PubMed] [Google Scholar]
  21. Riggs A. D., Lin S., Wells R. D. Lac repressor binding to synthetic DNAs of defined nucleotide sequence. Proc Natl Acad Sci U S A. 1972 Mar;69(3):761–764. doi: 10.1073/pnas.69.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rünzi W., Matzura H. In vivo distribution of ribonucleic acid polymerase between cytoplasm and nucleoid in Escherichia coli. J Bacteriol. 1976 Mar;125(3):1237–1239. doi: 10.1128/jb.125.3.1237-1239.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto K., Alberts B. The interaction of estradiol-receptor protein with the genome: an argument for the existence of undetected specific sites. Cell. 1975 Apr;4(4):301–310. doi: 10.1016/0092-8674(75)90150-6. [DOI] [PubMed] [Google Scholar]
  24. von Hippel P. H., Revzin A., Gross C. A., Wang A. C. Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4808–4812. doi: 10.1073/pnas.71.12.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES