Abstract
5-Bromodeoxycytidine is phosphorylated to 5-bromodeoxycytidine 5′-monophosphate in extracts of cells infected with herpes simplex virus but not in extracts of uninfected cells. The conversion of 5-bromodeoxycytidine to nucleotides and its utilization for DNA synthesis in uninfected cells occurs by deamination of 5-bromodeoxycytidine to 5-bromodeoxyuridine followed by phosphorylation of 5-bromodeoxyuridine to 5-bromodeoxyuridine 5′-monophosphate. In contrast, in cells infected with herpes simplex virus, 5-bromodeoxycytidine is phosphorylated directly to 5-bromodeoxycytidine 5′-monophosphate, which can then be deaminated to 5-bromodeoxyuridine 5′-monophosphate and incorporated into DNA. These results indicate a difference in the substrate specificity of nucleoside kinases induced by herpes simplex virus and the enzymes present in uninfected cells. It is suggested that this difference in substrate specificity between virus-induced and host-cell enzymes may allow selective chemotherapy of herpes simplex infections with 5-bromo- or 5-iododeoxycytidine.
Keywords: deoxycytidine kinase, thymidine kinase, halogenated pyrimidine nucleosides, antiviral chemotherapy
Full text
PDF![3788](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/427329/043ff97c9cb8/pnas00139-0526.png)
![3789](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/427329/0a3ac2b26151/pnas00139-0527.png)
![3790](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/427329/293247fc9544/pnas00139-0528.png)
![3791](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/427329/4f7edebaae46/pnas00139-0529.png)
![3792](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/427329/3f3cc7233ea3/pnas00139-0530.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bresnick E., Thompson U. B. Properties of deoxythymidine kinase partially purified from animal tumors. J Biol Chem. 1965 Oct;240(10):3967–3974. [PubMed] [Google Scholar]
- CRAMER J. W., PRUSOFF W. H., WELCH A. D. 5-Bromo-2'-deoxycytidine (BCDR). II. Studies with murine neoplastic cells in culture and in vitro. Biochem Pharmacol. 1961 Nov;8:331–335. doi: 10.1016/0006-2952(61)90111-3. [DOI] [PubMed] [Google Scholar]
- CRAMER J. W., PRUSOFF W. H., WELCH A. D., SARTORELLIAC, DELAMORE I. W., VON ESSEN C. F., CHANG P. K. Studies on the biochemical pharmacology of 5-iodo-2'-deoxycytidine in vitro and in vivo. Biochem Pharmacol. 1962 Aug;11:761–768. doi: 10.1016/0006-2952(62)90044-8. [DOI] [PubMed] [Google Scholar]
- Camiener G. W., Smith C. G. Studies of the enzymatic deamination of cytosine arabinoside. I. Enzyme distribution and species specificity. Biochem Pharmacol. 1965 Oct;14(10):1405–1416. doi: 10.1016/0006-2952(65)90175-9. [DOI] [PubMed] [Google Scholar]
- Camiener G. W. Studies of the enzymatic deamination of ara-cytidine. V. inhibition in vitro and in vivo by tetrahydrouridine and other reduced pyrimidine nucleosides. Biochem Pharmacol. 1968 Sep;17(9):1981–1991. doi: 10.1016/0006-2952(68)90114-7. [DOI] [PubMed] [Google Scholar]
- Cohen G. H. Ribonucleotide reductase activity of synchronized KB cells infected with herpes simplex virus. J Virol. 1972 Mar;9(3):408–418. doi: 10.1128/jvi.9.3.408-418.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper G. M., Greer S. Phosphorylation of 5-halogenated deoxycytidine analogues by deoxycytidine kinase. Mol Pharmacol. 1973 Nov;9(6):704–710. [PubMed] [Google Scholar]
- Cooper G. M., Greer S. The effect of inhibition of cytidine deaminase by tetrahydrouridine on the utilization of deoxycytidine and 5-bromodeoxycytidine for deoxyribonucleic acid synthesis. Mol Pharmacol. 1973 Nov;9(6):698–703. [PubMed] [Google Scholar]
- Duff R., Rapp F. Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol. 1971 Oct;8(4):469–477. doi: 10.1128/jvi.8.4.469-477.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein M. A. Aspects of the EB virus. Adv Cancer Res. 1970;13:383–411. doi: 10.1016/s0065-230x(08)60169-4. [DOI] [PubMed] [Google Scholar]
- HERRMAN E. C., Jr Plaque inhibition test for detection of specific inhibitors of DNA containing viruses. Proc Soc Exp Biol Med. 1961 May;107:142–145. [PubMed] [Google Scholar]
- KAUFMAN H. E., HEIDELBERGER C. THERAPEUTIC ANTIVIRAL ACTION OF 5-TRIFLUOROMETHYL-2'-DEOXYURIDINE IN HERPES SIMPLEX KERATITIS. Science. 1964 Aug 7;145(3632):585–586. doi: 10.1126/science.145.3632.585. [DOI] [PubMed] [Google Scholar]
- KIT S., DUBBS D. R. Acquisition of thymidine kinase activity by herpes simplex-infected mouse fibroblast cells. Biochem Biophys Res Commun. 1963 Apr 2;11:55–59. doi: 10.1016/0006-291x(63)90027-5. [DOI] [PubMed] [Google Scholar]
- KIT S., DUBBS D. R., PIEKARSKI L. J., HSU T. C. DELETION OF THYMIDINE KINASE ACTIVITY FROM L CELLS RESISTANT TO BROMODEOXYURIDINE. Exp Cell Res. 1963 Aug;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
- Kaufmann H. E. In vivo studies with antiviral agents. Ann N Y Acad Sci. 1965 Jul 30;130(1):168–180. doi: 10.1111/j.1749-6632.1965.tb12550.x. [DOI] [PubMed] [Google Scholar]
- Kit S., Dubbs D. R., Anken M. Altered properties of thymidine kinase after infection of mouse fibroblast cells with herpes simplex virus. J Virol. 1967 Feb;1(1):238–240. doi: 10.1128/jvi.1.1.238-240.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemperer H. G., Haynes G. R., Shedden W. I., Watson D. H. A virus-specific thymidine kinase in BHK-21 cells infected with herpes simplex virus. Virology. 1967 Jan;31(1):120–128. doi: 10.1016/0042-6822(67)90015-3. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leopold I. H. Clinical experience with nucleosides in herpes simplex eye infections in man and animals. Ann N Y Acad Sci. 1965 Jul 30;130(1):181–191. doi: 10.1111/j.1749-6632.1965.tb12551.x. [DOI] [PubMed] [Google Scholar]
- Momparler R. L., Fischer G. A. Mammalian deoxynucleoside kinase. I. Deoxycytidine kinase: purification, properties, and kinetic studies with cytosine arabinoside. J Biol Chem. 1968 Aug 25;243(16):4298–4304. [PubMed] [Google Scholar]
- Naib Z. M., Nahmias A. J., Josey W. E. Cytology and histopathology of cervical herpes simplex infection. Cancer. 1966 Jul;19(7):1026–1031. doi: 10.1002/1097-0142(196607)19:7<1026::aid-cncr2820190718>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- Neil G. L., Moxley T. E., Manak R. C. Enhancement by tetrahydrouridine of 1-beta-D-arabinofuranosylcytosine (cytarabine) oral activity in L1210 leukemic mice. Cancer Res. 1970 Aug;30(8):2166–2172. [PubMed] [Google Scholar]
- PERKINS E. S., WOOD R. M., SEARS M. L., PRUSOFF W. H., WELCH A. D. Anti-viral activities of several iodinated pyrimidine deoxyribonucleosides. Nature. 1962 Jun 9;194:985–986. doi: 10.1038/194985a0. [DOI] [PubMed] [Google Scholar]
- Perera P. A., Morrison J. M. Evidence for the induction of a new deoxycytidine kinase in cells infected with herpes virus. Biochem J. 1970 Apr;117(2):21P–22P. doi: 10.1042/bj1170021pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROIZMAN B., ROANE P. R., Jr A physical difference between two strains of herpes simplex virus apparent on sedimentation in cesium chloride. Virology. 1961 Sep;15:75–79. doi: 10.1016/0042-6822(61)90079-4. [DOI] [PubMed] [Google Scholar]
- Renis H. E., Buthala D. A. Development of resistance to antiviral drugs. Ann N Y Acad Sci. 1965 Jul 30;130(1):343–354. doi: 10.1111/j.1749-6632.1965.tb12568.x. [DOI] [PubMed] [Google Scholar]
- Renis H. E. Comparison of cytotoxicity and antiviral activity of 1-beta-D-arabino-furanosyl-5-iodocytosine with related compounds. Cancer Res. 1970 Jan;30(1):189–194. [PubMed] [Google Scholar]
- Wellings P. C., Awdry P. N., Bors F. H., Jones B. R., Brown D. C., Kaufman H. E. Clinical evaluation of trifluorothymidine in the treatment of herpes simplex corneal ulcers. Am J Ophthalmol. 1972 Jun;73(6):932–942. doi: 10.1016/0002-9394(72)90463-1. [DOI] [PubMed] [Google Scholar]