Abstract
The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound to the RecA protein primary site. We conclude that the specificity reflects an intrinsic property of the secondary site of RecA protein rather than an interaction between DNa molecules within nucleoprotein filament--i.e., self-recognition. The secondary DNA binding site displays a higher affinity for ssDNA than for double-stranded DNA, and the binding of ssDNA to the secondary site strongly inhibits DNA strand exchange. We suggest that the secondary binding site has a dual role in DNA strand exchange. During the homology search, it binds double-stranded DNA weakly; upon finding local homology, this site binds, with higher affinity, the ssDNA strand that is displaced during DNA strand exchange. These characteristics facilitate homologous pairing, promote stabilization of the newly formed heteroduplex DNA, and contribute to the directionality of DNA strand exchange.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adzuma K. Stable synapsis of homologous DNA molecules mediated by the Escherichia coli RecA protein involves local exchange of DNA strands. Genes Dev. 1992 Sep;6(9):1679–1694. doi: 10.1101/gad.6.9.1679. [DOI] [PubMed] [Google Scholar]
- Cox M. M. Relating biochemistry to biology: how the recombinational repair function of RecA protein is manifested in its molecular properties. Bioessays. 1993 Sep;15(9):617–623. doi: 10.1002/bies.950150908. [DOI] [PubMed] [Google Scholar]
- Howard-Flanders P., West S. C., Stasiak A. Role of RecA protein spiral filaments in genetic recombination. Nature. 1984 May 17;309(5965):215–219. doi: 10.1038/309215a0. [DOI] [PubMed] [Google Scholar]
- Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menetski J. P., Kowalczykowski S. C. Transfer of recA protein from one polynucleotide to another. Kinetic evidence for a ternary intermediate during the transfer reaction. J Biol Chem. 1987 Feb 15;262(5):2085–2092. [PubMed] [Google Scholar]
- Müller B., Koller T., Stasiak A. Characterization of the DNA binding activity of stable RecA-DNA complexes. Interaction between the two DNA binding sites within RecA helical filaments. J Mol Biol. 1990 Mar 5;212(1):97–112. doi: 10.1016/0022-2836(90)90307-8. [DOI] [PubMed] [Google Scholar]
- Ogawa T., Shinohara A., Nabetani A., Ikeya T., Yu X., Egelman E. H., Ogawa H. RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harb Symp Quant Biol. 1993;58:567–576. doi: 10.1101/sqb.1993.058.01.063. [DOI] [PubMed] [Google Scholar]
- Podyminogin M. A., Meyer R. B., Gamper H. B. Sequence-specific covalent modification of DNA by cross-linking oligonucleotides. Catalysis by RecA and implication for the mechanism of synaptic joint formation. Biochemistry. 1995 Oct 10;34(40):13098–13108. doi: 10.1021/bi00040a022. [DOI] [PubMed] [Google Scholar]
- Rao B. J., Radding C. M. Formation of base triplets by non-Watson-Crick bonds mediates homologous recognition in RecA recombination filaments. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6161–6165. doi: 10.1073/pnas.91.13.6161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao B. J., Radding C. M. Homologous recognition promoted by RecA protein via non-Watson-Crick bonds between identical DNA strands. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6646–6650. doi: 10.1073/pnas.90.14.6646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stasiak A., Egelman E. H. Structure and function of RecA-DNA complexes. Experientia. 1994 Mar 15;50(3):192–203. doi: 10.1007/BF01924002. [DOI] [PubMed] [Google Scholar]
- Stasiak A., Stasiak A. Z., Koller T. Visualization of RecA-DNA complexes involved in consecutive stages of an in vitro strand exchange reaction. Cold Spring Harb Symp Quant Biol. 1984;49:561–570. doi: 10.1101/sqb.1984.049.01.063. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Kubista M., Nordén B. Binding stoichiometry and structure of RecA-DNA complexes studied by flow linear dichroism and fluorescence spectroscopy. Evidence for multiple heterogeneous DNA co-ordination. J Mol Biol. 1989 Jan 5;205(1):137–147. doi: 10.1016/0022-2836(89)90371-9. [DOI] [PubMed] [Google Scholar]
- Tracy R. B., Kowalczykowski S. C. In vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein. Genes Dev. 1996 Aug 1;10(15):1890–1903. doi: 10.1101/gad.10.15.1890. [DOI] [PubMed] [Google Scholar]
- Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. doi: 10.1073/pnas.82.14.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West S. C. The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell. 1994 Jan 14;76(1):9–15. doi: 10.1016/0092-8674(94)90168-6. [DOI] [PubMed] [Google Scholar]
- Wittung P., Nordén B., Kim S. K., Takahashi M. Interactions between DNA molecules bound to RecA filament. Effects of base complementarity. J Biol Chem. 1994 Feb 25;269(8):5799–5803. [PubMed] [Google Scholar]
- Zlotnick A., Mitchell R. S., Steed R. K., Brenner S. L. Analysis of two distinct single-stranded DNA binding sites on the recA nucleoprotein filament. J Biol Chem. 1993 Oct 25;268(30):22525–22530. [PubMed] [Google Scholar]