Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Mar;81(6):1888–1891. doi: 10.1073/pnas.81.6.1888

Mechanoelectrical transducer has discrete conductances in the chick vestibular hair cell.

H Ohmori
PMCID: PMC345028  PMID: 6584923

Abstract

Properties of mechanoelectrical transduction were studied at the single-cell level by applying a whole-cell recording variation of the patch-clamp technique to dissociated vestibular hair cells of chicks. The hair bundle was directly stimulated by a glass rod, and transduction currents were recorded from the cell body. After a triangular movement of the stimulating probe, the transduction current was generated stepwise between discrete levels of amplitude. The minimum step amplitude was -1.8 pA at -27 mV in Na-containing normal saline.

Full text

PDF
1888

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader C. R., Bertrand D., Schwartz E. A. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol. 1982 Oct;331:253–284. doi: 10.1113/jphysiol.1982.sp014372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagger-Sjöbäck D. The sensory hairs and their attachments in the lizard basilar papilla. Brain Behav Evol. 1974;10(1-3):88–94. doi: 10.1159/000124304. [DOI] [PubMed] [Google Scholar]
  3. Bagger-Sjöbäck D., Wersäll J. The sensory hairs and tectorial membrane of the basilar papilla in the lizard Calotes versicolor. J Neurocytol. 1973 Sep;2(3):329–350. doi: 10.1007/BF01104034. [DOI] [PubMed] [Google Scholar]
  4. Corey D. P., Hudspeth A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature. 1979 Oct 25;281(5733):675–677. doi: 10.1038/281675a0. [DOI] [PubMed] [Google Scholar]
  5. Corey D. P., Hudspeth A. J. Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. J Neurosci Methods. 1980 Dec;3(2):183–202. doi: 10.1016/0165-0270(80)90025-4. [DOI] [PubMed] [Google Scholar]
  6. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudspeth A. J. Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci. 1982 Jan;2(1):1–10. doi: 10.1523/JNEUROSCI.02-01-00001.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hudspeth A. J. Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system. Annu Rev Neurosci. 1983;6:187–215. doi: 10.1146/annurev.ne.06.030183.001155. [DOI] [PubMed] [Google Scholar]
  9. Kimura R. S. Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta Otolaryngol. 1966 Jan-Feb;61(1):55–72. doi: 10.3109/00016486609127043. [DOI] [PubMed] [Google Scholar]
  10. Lam D. M. Biosynthesis of acetylcholine in turtle photoreceptors. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1987–1991. doi: 10.1073/pnas.69.7.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis R. S., Hudspeth A. J. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature. 1983 Aug 11;304(5926):538–541. doi: 10.1038/304538a0. [DOI] [PubMed] [Google Scholar]
  12. Matsuura S., Ikeda K., Furukawa T. Effects of streptomycin, kanamycin, quinine, and other drugs on the microphonic potentials of goldfish sacculus. Jpn J Physiol. 1971 Oct;21(5):579–590. doi: 10.2170/jjphysiol.21.579. [DOI] [PubMed] [Google Scholar]
  13. Miller M. R. Further scanning electron microscope studies of lizard auditory papillae. J Morphol. 1978 Jun;156(3):381–417. doi: 10.1002/jmor.1051560305. [DOI] [PubMed] [Google Scholar]
  14. Takasaka T., Smith C. A. The structure and innervation of the pigeon's basilar papilla. J Ultrastruct Res. 1971 Apr;35(1):20–65. doi: 10.1016/s0022-5320(71)80141-7. [DOI] [PubMed] [Google Scholar]
  15. von Düring M., Karduck A., Richter H. G. The fine structure of the inner ear in caiman crocodilus. Z Anat Entwicklungsgesch. 1974;145(1):41–65. doi: 10.1007/BF00519125. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES