Although it is widely assumed that active RNA polymerase tracks along its template, we find that DNA, not the polymerase, moves, suggesting that polymerase works by reeling in the template.
Abstract
It is widely assumed that active RNA polymerases track along their templates to produce a transcript. We test this using chromosome conformation capture and human genes switched on rapidly and synchronously by tumour necrosis factor alpha (TNFα); one is 221 kbp SAMD4A, which a polymerase takes more than 1 h to transcribe. Ten minutes after stimulation, the SAMD4A promoter comes together with other TNFα-responsive promoters. Subsequently, these contacts are lost as new downstream ones appear; contacts are invariably between sequences being transcribed. Super-resolution microscopy confirms that nascent transcripts (detected by RNA fluorescence in situ hybridization) co-localize at relevant times. Results are consistent with an alternative view of transcription: polymerases fixed in factories reel in their respective templates, so different parts of the templates transiently lie together.
Author Summary
We were all taught that an RNA polymerase becomes active by diffusing to a promoter, initiating transcription, and then tracking like a locomotive down the DNA template. We test this using tumour necrosis factor alpha (TNFα) to switch on transcription of two human genes which lie far apart on the genetic map and then measure how close the two are in 3D nuclear space. If what we were taught were true, there is no reason to expect the two genes to lie together. What we find—using two different techniques (cutting/ligating nearby sequences, and super-resolution microscopy)—is that the two genes are initially apart; then the parts of the genes being transcribed at a particular moment transiently come into close proximity. Our results are consistent with a model in which genes diffuse to a cluster of polymerases—a transcription factory—with transcripts being made as immobile polymerases reel in their respective templates. The DNA moves, not the polymerase.
Introduction
It is widely assumed that an RNA polymerase transcribes by diffusing to a promoter, binding, and then tracking down the template as it makes its transcript [1]. Accumulating evidence, however, is consistent with an alternative: a promoter diffuses to a transcription factory where it binds to a transiently immobilized polymerase, which then reels in its template as it extrudes a transcript [2]–[6]. Here, we address the question: Are transcribing enzymes mobile or immobile?
Our strategy involves switching on transcription of two genes rapidly and synchronously using tumour necrosis factor alpha (TNFα). This cytokine orchestrates the inflammatory response in human umbilical vein endothelial cells (HUVECs) by signalling through nuclear factor kappa B (NF-κB) to activate a sub-set of genes [7]–[8]. SAMD4A—a 221 kbp-long gene that encodes a regulator of this pathway—is amongst the first few to respond. Microarray analysis reveals that a synchronous wave of transcription initiates within 15 min, before sweeping down the gene (at ∼3 kbp/min) to reach the terminus ∼70 min later (Figure S1); no transcripts from the non-coding strand are detected [9]. RNA FISH using intronic probes confirms that almost half the cells in the population respond; essentially no nascent RNA can be detected prior to stimulation, no transcription occurs from the antisense strand, and probes targeting successive introns only yield signal as the wave passes by [9].
TNFAIP2—a short 11 kbp gene that lies ∼50 Mbp away from SAMD4A on chromosome 14—encodes another regulator. It is switched on as rapidly and then repeatedly transcribed over the next 90 min. We use it as an external reference point (or “anchor”) and analyze the contacts it makes with different parts of SAMD4A using chromosome conformation capture (3C)—a powerful tool for detecting proximity of two DNA sequences in 3D nuclear space [10]–[12]. If the conventional model for transcription applies, we would not expect the anchor to lie close to any part of SAMD4A either before or after adding TNFα, as it lies so far away on the chromosome (Figure 1, left). Even if polymerases on the two genes happened to lie together (for whatever reason), tracking of one down the long gene should increase the distance between transcribed parts of the two genes. But if both genes were transcribed by polymerases transiently immobilized in one factory, the short gene—which would repeatedly attach to (and detach from) the factory as it initiates (and terminates)—should always lie close to just the part of SAMD4A being transcribed at that particular moment (Figure 1, right). Thus, as the polymerase reels in SAMD4A, introns 1, 2, 3, etc. should successively be brought into the factory to lie transiently next to the anchor. Results using TNFAIP2 (and other anchors) are impossible to reconcile with the widely held assumption that polymerases track; rather they are consistent with active polymerases being immobilized in factories.
Results
Some Interacting Partners of SAMD4A and Their Transcriptional Activation
As our strategy requires one gene to be used as an anchor, we applied 3C and a variant of “associated chromosome trap” (ACT) [13]–[14] to search for genes that interacted with SAMD4A. A number were found, and we chose four that were detected in independent experiments and which were relatively short (<60 kbp): TNFAIP2, GCH1, PTRF, and SLC6A5 (Figure S2).
We initially verified that all five genes responded to TNFα by reverse-transcriptase PCR (RT-PCR). No intronic RNA (or only low levels in the case of PTRF) copied from the five genes was detected before induction, but higher levels were seen within 10 min of TNFα treatment (Figures 2A and S3F). Intronic RNA copied from further downstream in SAMD4A then appeared consistent with pioneering polymerases transcribing its 221 kbp at ∼3 kbp/min. Thus, RNA copied immediately downstream of the transcription start site (tss) appeared after 10 min, from ∼34 kbp into intron 1 after 30 min, from intron 3 after 60 min, and from the terminus after 85 min. In contrast, signal from each end of TNFAIP2 is seen by 10 min. This 11 kbp gene is so short, and synchrony sufficiently poor, that some polymerases in the population are initiating as others are terminating (Figure 2A). GCH1 and SLC6A5—both genes of ∼60 kbp—present intermediate patterns; pioneering polymerases reach termini after ∼30 min, before a second (reasonably synchronous) transcription cycle begins (Figures 2A and S3F). Such cycling has now been seen on various mammalian genes (e.g., [15]). Chromatin immunoprecipitation (ChIP) showed an enrichment of RNA polymerase II bound to the tss of all five genes within 10 min (Figures 2B and S3G). It also showed that NF-κB bound to promoters within 10 min (Figure S4), as might be expected [16]. RNA fluorescence in situ hybridization (FISH) also shows that intronic RNA copied from the relevant parts of the genes is present at the appropriate times (Figure S5). Therefore, results obtained with four independent methods (i.e., microarrays, RT-PCR, ChIP, RNA FISH) are in agreement and provide data on when polymerizing complexes are actively transcribing the sequences to be analyzed. These data are summarized in cartoons that accompany the results.
Changing Contacts Between Two TNFα-Responsive Genes on Chromosome 14
Contacts between selected regions of SAMD4A and TNFAIP2 were monitored by 3C, where the presence of a band after 34 PCR cycles reflects a high contact frequency (Figure 3). Essentially no contacts are seen between the tss of TNFAIP2 (the anchor) and regions ∼25 kbp upstream or downstream of SAMD4A (a, h) at any time, or between the anchor and any region of SAMD4A (b–g) at 0 min—when no polymerases are engaged on either gene (Figure 3B, cartoon). By 10 min (when polymerases are first found on both genes; cartoon), contacts appear between the anchor and SAMD4A regions b, c (Figure 3B). Such contacts are soon lost, as new ones appear further 3′ on SAMD4A; they seem to steadily “slide” down the long gene. Thus, by 30 min, contacts are with regions c and d, by 60 min with region e, and by 85 min with regions e, f, and g. (The presence of more than one contact at certain times is consistent with imperfect synchrony amongst the ∼106 cells assayed.) Treatment with DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole)—a reagent that inhibits transcription and releases polymerases from the template (Figure S6; [17]–[18])—reduces contacts (Figure 3B, grey box). Similar changing contacts were seen using (i) real-time PCR to quantify selected interactions (Figure S7), (ii) the 3′ end of TNFAIP2 as an anchor (Figure 3C, D; the gene is short enough for polymerases to be found at the same times on promoter and terminus in different cells in the population), and (iii) if HindIII replaced SacI as the restriction enzyme used for 3C (Figure S8A, B). In every case, contacts are only seen at times when active polymerases are transcribing contacting sequences. Note that several genes lying within 50 Mbp on either side of SAMD4A do not interact with it (e.g., responsive NFKBIA, SAV1, IRF9, GPR68, and PAPLN; non-responsive GMFB, YY1, HIF1A, and C14orf2; and constitutive RCOR1; Figure S9A). As a whole, these results are inconsistent with the model involving tracking polymerases (Figure 1, left) but are simply explained if the two contacting templates are transiently tethered to polymerases fixed in one factory (Figure 1, right).
Changing Contacts Between TNFα-Responsive Genes on Different Chromosomes
PTRF is a 21 kbp gene that lies on a different chromosome (i.e., 17) from SAMD4A (on 14). The pattern of interactions between the two is much the same as those seen between SAMD4A and TNFAIP2 (Figure S3D, E), which is again consistent with the model involving fixed polymerases (Figure 1, right).
A more complex pattern of changing contacts is seen between SAMD4A and a 60 kbp gene on chromosome 11, SLC6A5 (Figure 4); this pattern suggests that polymerases must be present on both contacting sequences. Thus, as before, no contacts are seen between the tss of SLC6A5 (the anchor) and regions upstream or downstream of SAMD4A (a, h) at any time, or between the anchor and any region of SAMD4A at 0 min—when no polymerases are engaged on either gene (Figure 4B, cartoon). Again as before, contacts appear between the anchor and SAMD4A region c (which includes the tss and the beginning of intron 1) after 10 min (Figure 4B), when polymerases are first found on both. But after 30 min (when contacts with region d were seen in Figure 3B), essentially no contacts are found (Figure 4B). This is consistent with pioneering polymerases leaving the tss of the anchor so that they are now transcribing the 3′ end of this ∼60 kbp gene, as data in Figure 2 indicate. By 60 min (when a second polymerase is just initiating on the tss of SLC6A5; Figure 2), we see a strong (second) contact with the region on SAMD4A that its pioneering polymerase is now transcribing (i.e., e in Figure 4B). This interaction is DRB-sensitive (Figure 4B, grey box), and so depends on continuing transcription. No prominent interactions are seen at 85 min (Figure 4B) even though we know SAMD4A is still being transcribed. Moreover, the contact seen with region f in Figure 3B is missing, presumably because the second polymerase on SLC6A5 has left the tss used as the anchor and is now transcribing the 3′ end (Figure 2). An almost identical pattern with analogous missing contacts is seen if HindIII replaces SacI during preparation of the 3C template (Figure S8A, C).
If the above explanation is correct, with contacts only being seen if active polymerases are present on both contacting partners, then use of the 3′ end of SLC6A5 as an anchor should change the pattern as follows. The two bands seen in Figure 4B should disappear (as polymerases at the relevant times are on the tss and not the 3′ end now used as the anchor), while the two “missing” bands should reappear (as polymerases have now reached the 3′ end); they do. For example, comparison of Figure 4B and C shows that the first missing band/contact (with d at 30 min in Figure 3B) reappears in Figure 4C, as does the second (with f at 85 min). Bands/contacts are also sensitive to DRB (Figures 4B,C, grey boxes).
This interpretation is reinforced by an analysis involving 5′ and 3′ anchors on another gene (of similar length as SLC6A5) that lie on the same chromosome as SAMD4A. Thus, GCH1 is ∼0.8 Mbp away from SAMD4A and responds as rapidly to TNFα (Figure S3F, G). When its 5′ and 3′ ends are used as anchors, a complex set of changing contacts (and missing bands) is again seen (Figure S3A–C).
We also confirmed that the tss of GCH1 lay next to the tss of TNFAIP2 at 10 min but not at 0 min (Figure S9A). This is consistent with responding promoters coming together to the same factory when active. As all other contacts analyzed involve SAMD4A, these results also indicate that such reorganization is not peculiar to one long gene.
Nascent RNAs Also Colocalize at the Appropriate Times
If responding regions only lie together when transcribed, their nascent transcripts should also only be together at the appropriate times. To test this we used RNA FISH with pairs of probes each able to detect an intron within a single nascent transcript copied RNA transcript at its transcription site; colocalization of nascent transcripts copied from the two different genes then yields a yellow focus [9],[19]. Yellow foci were given by the TNFAIP2 probe (red) and SAMD4A probes c, d, and e/f (green) at 10, 30, and 60 min post-induction (Figure 5A–C). No such colocalization was seen at other times (Figure S5), when relevant regions were not being transcribed. As a control, we analyzed nascent transcripts copied from a non-responsive (constitutively-active) gene—RCOR1—that lies between SAMD4A and TNFAIP2 (Figure S9A); no yellow foci were detected (Figure 5D). Just as 3C showed the templates lie together (Figure 2), RNA FISH confirms their transcripts also colocalize.
We also investigated inter-chromosomal contacts 30 min post-induction, using probes targeting (green) SAMD4A region d and (red) SLC6A5 intron 1 (close to the tss) or intron 10 (close to the 3′ end). When no 3C contacts between SAMD4A region d and the tss of SLC6A5 were seen (Figure 4B), no yellow foci were detected (Figure 5E; Figure S5C). But the “missing” 3C band was seen at 30 min using the 3′ terminus as anchor (Figure 4C), and then yellow foci are seen (Figure 5F). As a control, we analyzed nascent transcripts copied from another non-responsive (constitutively-active) gene—EDN1—that lies on a different chromosome; again, no yellow foci were seen (Figure 5G).
Super-Resolution Localization of Nascent Transcripts
Electron microscopy reveals that nascent nucleoplasmic transcripts typically lie on the surface of ∼87 nm (protein-rich) factories [20]. To see if colocalizing transcripts encoded by the SAMD4A d:TNFAIP2 and SAMD4A d:SLC6A5 pairs lie this close together, we used a new approach that allows resolution beyond the diffraction limit of the light microscope [21]–[23]. We assume the red and green signals that yield a yellow focus (e.g., Figure S5B) mark two sub-diffraction spots, fit Gaussian curves to their intensities, and measure the distance (with 15 nm precision) between peaks [23]; the distance between the two transcripts ranges from 7 to 102 nm, with a mean separation of 62 nm (Figure 5H). This distribution is much like that seen when a pair of red and green points are repeatedly and randomly distributed in a 35 nm shell surrounding an 87 nm diameter sphere (Figure 5H, orange line). [Subdiffraction-sized red/green fluorescent beads of 110 nm serve as a truly co-localizing control (Figure S5B, left); then, the distance between their red and green peaks is within the uncertainty of our measurements (n = 8; not shown).] These results are consistent with nascent transcripts copied from the two different genes lying on the surface of the same transcription factory.
Discussion
We tested the two models illustrated in Figure 1 to address one fundamental assumption of modern molecular biology, namely that a transcribing polymerase tracks along its template as it makes its transcript. SAMD4A has a unique set of properties that make it particularly useful for this analysis; it can be switched on rapidly and synchronously by TNFα (with approximately half the cells in the population responding), its length provides sufficient temporal and spatial resolution (it takes ∼70 min to transcribe, and contains many restriction sites that facilitate the use of 3C to discriminate between contacts produced by different parts of the gene), and neither its sense or anti-sense strands encode other transcription units that might complicate analysis. 3C reveals that just the parts of SAMD4A being transcribed at a particular moment lie close to just the parts of three other genes being transcribed at that moment (Figures 3, 4, S3, and S8). These inter-genic contacts occur infrequently, as expected [24]–[26]. RNA FISH confirmed that the relevant nascent RNAs lie together at the appropriate times (Figures 5 and S5), while “super-resolution” microscopy (allowing measurements below the diffraction limit) showed that the distance between the two transcripts is consistent with them lying within 35 nm of the surface of an 87 nm sphere (Figure 5H). Such results are difficult—if not impossible—to explain if polymerases track. Rather, they are consistent with an alternative where two responding genes diffuse to an 87 nm factory to be transcribed by immobilized enzymes. Then, as the two genes are reeled in, only parts being transcribed at a given moment will lie transiently together [5].
These results beg many questions. For example, we were able to detect interacting sequences at a reasonable frequency simply by assuming the existence of factories dedicated to transcribing genes that respond rapidly to TNFα (Figures S2 and S9). If such specialized factories exist [27],[28], how many might there be in a nucleus, and how many are accessible to a gene like SAMD4A? Fortunately, these questions will soon be answered, as techniques for analyzing all contacts made by any gene in a nucleus have been developed [29]. We also note that our results are consistent with others obtained from a recent genome-wide study; after stimulating human cells with estrogen and mapping contacts made by bound estrogen receptor-α (using ChIP, 3C, and “deep” sequencing), contacting partners were often associated with bound RNA polymerase II [30].
Materials and Methods
A detailed description of the experimental procedures is given in Text S1.
Cell Culture
HUVECs from pooled donors (Lonza) were grown to 80%–90% confluency in Endothelial Basal Medium 2-MV with supplements (EBM; Lonza), starved (18 h) in EBM+0.5% FBS, and treated with TNFα (10 ng/ml; Peprotech) for up to 85 min. In some cases, 50 µM 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB; Sigma-Aldrich) was added 20 min before harvesting cells.
3C
3C was performed as described [10]. In brief, 107 cells were fixed (10 min; room temperature) in 1% paraformaldehyde (Electron Microscopy Sciences), “Dounce”-homogenized, and membranes lyzed (30 min; 4°C) using 0.2% Igepal (Sigma-Aldrich). Nuclei were pelleted and resuspended in the appropriate restriction buffer, incubated (16 h; 37°C) with SacI or HindIII (800 units/106 cells; New England Biolabs), diluted to 8 ml in ligation buffer, T4 DNA ligase added (4,000 units/106 cells; New England Biolabs), and incubated (48 h at 4°C, then 20 min at room temperature). After reversing cross-links (16 h; 65°C), DNA was purified by phenol extraction and ethanol precipitation, cut with BglII to reduce fragment length, and repurified. 71%–78% restriction sites in the template were cut by SacI or HindIII (determined as in [31]). PCR conditions were adjusted so that reactions were within the linear range of amplification (i.e., ∼175 ng template/reaction; 1.75 mM MgCl2, 1% dimethylsulphoxide, 10 pmoles of each primer, and GoTaq polymerase (Promega); 95°C for 2 min, then 34 cycles at 95°C for 55 s, 59°C for 45 s, and 72°C for 20 s, followed by one cycle at 72°C for 2 min); amplimers were resolved on 2.5% agarose gels, stained with SYBR Green (Invitrogen), and scanned using an FLA-5000 scanner (Fuji). Identities of all 3C products were confirmed by DNA sequencing (Geneservices, Oxford), except for those in Figure S8 (where identities were confirmed by restriction digestion). Amplification efficiencies were examined using a control template generated by SacI or HindIII digestion of BAC clones covering GAPDH on HSA12 (RP5-940J5; ImaGenes), SAMD4A, GCH1 (RP11-170J16, CTC-775N1, CTD-2586I5, CTD-2378G4; CHORI, Invitrogen), and TNFAIP2 (CTD-2594N9; Invitrogen) on HSA14, SLC6A5 on HSA11 (RP11-120F6; CHORI), and PTRF on HSA17 (RP11-194N12; CHORI) followed by ligation. This synthetic template was spiked (to reach 175 ng/µl) with HUVEC DNA cut with the relevant restriction enzyme and ligated. Other control templates included non-digested/ligated DNA and digested/non-ligated DNA (both from 106 cells). Results shown were reproduced using at least two independently obtained templates.
Supporting Information
Acknowledgments
We thank Francisco Ramirez, Mika Kobayashi, and Akashi Izumi for their help, and Dirk Eick and Hiroshi Kimura for kindly providing antibodies.
Abbreviations
- 3C
chromosome conformation capture
- ACT
associated chromosome trap
- ChIP
chromatin immunoprecipitation
- FISH
fluorescence in situ hybridization
- HUVECs
human umbilical vein endothelial cells
- NF-κB
nuclear factor kappa B
- RT-PCR
reverse-transcriptase PCR
- TNFα tumour necrosis factor alpha
- tss
transcription start site
Footnotes
The authors have declared that no competing interests exist.
This work was supported by the Wellcome Trust (http://www.wellcome.ac.uk), grant number BVROJG0. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
- 1.Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell 4th edition. New York: Garland Science; 2002. 1463 [Google Scholar]
- 2.Jackson D. A, McCready S. J, Cook P. R. RNA is synthesised at the nuclear cage. Nature. 1981;292:552–555. doi: 10.1038/292552a0. [DOI] [PubMed] [Google Scholar]
- 3.Cook P. R. The organization of replication and transcription. Science. 1999;284:1790–1795. doi: 10.1126/science.284.5421.1790. [DOI] [PubMed] [Google Scholar]
- 4.Sexton T, Umlauf D, Kurukuti S, Fraser P. The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol. 2007;18:691–697. doi: 10.1016/j.semcdb.2007.08.008. [DOI] [PubMed] [Google Scholar]
- 5.Cook P. R. A model for all genomes; the role of transcription factories. J Mol Biol. 2009;395:1–10. doi: 10.1016/j.jmb.2009.10.031. [DOI] [PubMed] [Google Scholar]
- 6.Sutherland H, Bickmore W. A. Transcription factories: gene expression in unions? Nat Rev Genet. 2009;10:457–466. doi: 10.1038/nrg2592. [DOI] [PubMed] [Google Scholar]
- 7.Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunological Reviews. 2006;210:171–186. doi: 10.1111/j.0105-2896.2006.00375.x. [DOI] [PubMed] [Google Scholar]
- 8.Bradley J. R. TNF-mediated inflammatory disease. J Pathol. 2008;214:149–160. doi: 10.1002/path.2287. [DOI] [PubMed] [Google Scholar]
- 9.Wada Y, Ohta Y, Xu M, Tsutsumi S, Minami T, Inoue K, Komura D, Kitakami J, Oshida N, Papantonis A, et al. Visualizing a wave of transcription as it sweeps along activated human genes. Proc Natl Acad Sci U S A. 2009;106:18357–18361. doi: 10.1073/pnas.0902573106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Miele A, Gheldof N, Tabuchi T. M, Dostie J, Dekker J. Mapping chromatin interactions by chromosome conformation capture. Curr Protoc Mol Biol. 2006:21, Unit 21.11. doi: 10.1002/0471142727.mb2111s74. [DOI] [PubMed] [Google Scholar]
- 11.Simonis M, de Laat W. FISH-eyed and genome-wide views on the spatial organisation of gene expression. Biochim Biophys Acta. 2008;1783:2052–2060. doi: 10.1016/j.bbamcr.2008.07.020. [DOI] [PubMed] [Google Scholar]
- 12.Göndör A, Ohlsson R. Chromosome crosstalk in three dimensions. Nature. 2009;461:212–217. doi: 10.1038/nature08453. [DOI] [PubMed] [Google Scholar]
- 13.Ling J. Q, Li T, Hu J. F, Vu T. H, Chen H. L, Qiu X. W, Cherry A. M, Hoffman A. R. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science. 2006;312:269–272. doi: 10.1126/science.1123191. [DOI] [PubMed] [Google Scholar]
- 14.Würtele H, Chartrand P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Genome Res. 2006;14:477–495. doi: 10.1007/s10577-006-1075-0. [DOI] [PubMed] [Google Scholar]
- 15.Degenhardt T, Rybakova K. N, Tomaszewska A, Moné M. J, Westerhoff H. V, Bruggeman F. J, Carlberg C. Population-level transcription cycles derive from stochastic timing of single-cell transcription. Cell. 2009;138:489–501. doi: 10.1016/j.cell.2009.05.029. [DOI] [PubMed] [Google Scholar]
- 16.Ashall L, Horton C. A, Nelson D. E, Paszek P, Harper C. V, Sillitoe K, Ryan S, Spiller D. G, Unitt J. F, Broomhead D. S, et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324:242–246. doi: 10.1126/science.1164860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kimura H, Sugaya K, Cook P. R. The transcription cycle of RNA polymerase II in living cells. J Cell Biol. 2002;159:777–782. doi: 10.1083/jcb.200206019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Chapman R. D, Heidemann M, Albert T. K, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science. 2007;318:1780–1782. doi: 10.1126/science.1145977. [DOI] [PubMed] [Google Scholar]
- 19.Femino A. M, Fay F. S, Fogarty K, Singer R. H. Visualization of single RNA transcripts in situ. Science. 1998;280:585–590. doi: 10.1126/science.280.5363.585. [DOI] [PubMed] [Google Scholar]
- 20.Eskiw C. H, Rapp A, Carter D. R, Cook P. R. RNA polymerase II activity is located on the surface of protein-rich transcription factories. J Cell Sci. 2007;121:1999–2007. doi: 10.1242/jcs.027250. [DOI] [PubMed] [Google Scholar]
- 21.Thompson R. E, Larson D. R, Webb W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophysical J. 2002;82:2775–2783. doi: 10.1016/S0006-3495(02)75618-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Yildiz A, Forkey J. N, McKinney S. A, Ha T, Goldman Y. E, Selvin P. R. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science. 2003;300:2061–2065. doi: 10.1126/science.1084398. [DOI] [PubMed] [Google Scholar]
- 23.Larkin J. D, Publicover N. G, Sutko J. L. Photon event distribution sampling: an image formation technique for scanning microscopes permits tracking of sub-diffraction particles with high spatial and temporal resolution. J Microscopy. 2010 doi: 10.1111/j.1365-2818.2010.03406.x. advanced online publication DOI: 10.1111/j.1365-2818.2010.03406.x. [DOI] [PubMed] [Google Scholar]
- 24.Osborne C. S, Chakalova L, Brown K. E, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J. A, Lopes S, Reik W, Fraser P. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36:1065–1071. doi: 10.1038/ng1423. [DOI] [PubMed] [Google Scholar]
- 25.Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu K. S, Singh U, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38:1341–1347. doi: 10.1038/ng1891. [DOI] [PubMed] [Google Scholar]
- 26.Dhar S. S, Ongwijitwat S, Wong-Riley M. T. Chromosome conformation capture of all 13 genomic loci in the transcriptional regulation of the multisubunit bigenomic cytochrome C oxidase in neurons. J Biol Chem. 2009;284:18644–18650. doi: 10.1074/jbc.M109.019976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Pombo A, Jackson D. A, Hollinshead M, Wang Z, Roeder R. G, Cook P. R. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 1999;18:2241–2253. doi: 10.1093/emboj/18.8.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Xu M, Cook P. R. Similar active genes cluster in specialized transcription factories. J Cell Biol. 2008;181:615–623. doi: 10.1083/jcb.200710053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Lieberman-Aiden E, van Berkum N. L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B. R, Sabo P. J, Dorschner M. O, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. doi: 10.1126/science.1181369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Fullwood M. J, Liu M. H, Pan Y. F, Liu J, Xu H, Mohamed Y. B, Orlov Y. L, Velkov S, Ho A, Mei P. H, Chew E. G, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009;462:58–64. doi: 10.1038/nature08497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protocol. 2007;2:1722–1733. doi: 10.1038/nprot.2007.243. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.