Abstract
Several types of transgenic mice were used to study the influence of hypertriglyceridemia and cholesteryl ester transfer protein (CETP) expression on high density lipoprotein (HDL) levels, particle sizes, and metabolism. The presence of the CETP transgene in hypertriglyceridemic human apo CIII transgenic mice lowered HDL-cholesterol (HDL-C) 48% and apolipoprotein (apo) A-I 40%, decreased HDL size (particle diameter from 9.8 to 8.8 nm), increased HDL cholesterol ester (CE) fractional catabolic rate (FCR) 65% with a small decrease in HDL CE transport rate (TR) and increased apo A-I FCR 15% and decreased apo A-I TR 29%. The presence of the CETP transgene in hypertriglyceridemic mice with human-like HDL, human apo A-I apo CIII transgenic mice, lowered HDL-C 61% and apo A-I 45%, caused a dramatic diminution of HDL particle size (particle diameters from 10.3 and 9.1 to 7.6 nm), increased HDL CE FCR by 107% without affecting HDL CE TR, and increased apo A-I FCR 35% and decreased apo A-I TR 48%. Moreover, unexpectedly, hypertriglyceridemia alone in the absence of CETP was also found to cause lower HDL-C and apo A-I levels primarily by decreasing TRs. Decreased apo A-I TR was confirmed by an in vivo labeling study and found to be associated with a decrease in intestinal but not hepatic apo A-I mRNA levels. In summary, the introduction of the human apo A-I, apo CIII, and CETP genes into transgenic mice produced a high-triglyceride, low-HDL-C lipoprotein phenotype. Human apo A-I gene overexpression caused a diminution of mouse apo A-I and a change from monodisperse to polydisperse HDL. Human apo CIII gene overexpression caused hypertriglyceridemia with a significant decrease in HDL-C and apo A-I levels primarily due to decreased HDL CE and apo A-I TR but without a profound change in HDL size. In the hypertriglyceridemic mice, human CETP gene expression further reduced HDL-C and apo A-I levels, primarily by increasing HDL CE and apo A-I FCR, while dramatically reducing HDL size. This study provides insights into the genes that may cause the high-triglyceride, low-HDL-C phenotype in humans and the metabolic mechanisms involved.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aalto-Setälä K., Fisher E. A., Chen X., Chajek-Shaul T., Hayek T., Zechner R., Walsh A., Ramakrishnan R., Ginsberg H. N., Breslow J. L. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest. 1992 Nov;90(5):1889–1900. doi: 10.1172/JCI116066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agellon L. B., Walsh A., Hayek T., Moulin P., Jiang X. C., Shelanski S. A., Breslow J. L., Tall A. R. Reduced high density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J Biol Chem. 1991 Jun 15;266(17):10796–10801. [PubMed] [Google Scholar]
- Albrink M. J., Krauss R. M., Lindgrem F. T., von der Groeben J., Pan S., Wood P. D. Intercorrelations among plasma high density lipoprotein, obesity and triglycerides in a normal population. Lipids. 1980 Sep;15(9):668–676. doi: 10.1007/BF02534017. [DOI] [PubMed] [Google Scholar]
- Angelin B., Einarsson K., Hellström K., Leijd B. Bile acid kinetics in relation to endogenous tryglyceride metabolism in various types of hyperlipoproteinemia. J Lipid Res. 1978 Nov;19(8):1004–1016. [PubMed] [Google Scholar]
- Angelin B., Hershon K. S., Brunzell J. D. Bile acid metabolism in hereditary forms of hypertriglyceridemia: evidence for an increased synthesis rate in monogenic familial hypertriglyceridemia. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5434–5438. doi: 10.1073/pnas.84.15.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Applebaum-Bowden D., Haffner S. M., Wahl P. W., Hoover J. J., Warnick G. R., Albers J. J., Hazzard W. R. Postheparin plasma triglyceride lipases. Relationships with very low density lipoprotein triglyceride and high density lipoprotein2 cholesterol. Arteriosclerosis. 1985 May-Jun;5(3):273–282. doi: 10.1161/01.atv.5.3.273. [DOI] [PubMed] [Google Scholar]
- Austin M. A. Plasma triglyceride and coronary heart disease. Arterioscler Thromb. 1991 Jan-Feb;11(1):2–14. doi: 10.1161/01.atv.11.1.2. [DOI] [PubMed] [Google Scholar]
- Avogaro P., Ghiselli G., Soldan S., Bittolo Bon G. Relationship of triglycerides and HDL cholesterol in hypertriglyceridemia. Atherosclerosis. 1992 Jan;92(1):79–86. doi: 10.1016/0021-9150(92)90012-6. [DOI] [PubMed] [Google Scholar]
- Azrolan N., Breslow J. L. A solution hybridization/RNase protection assay with riboprobes to determine absolute levels of apoB, A-I, and E mRNA in human hepatoma cell lines. J Lipid Res. 1990 Jun;31(6):1141–1146. [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Blanche P. J., Gong E. L., Forte T. M., Nichols A. V. Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981 Sep 24;665(3):408–419. doi: 10.1016/0005-2760(81)90253-8. [DOI] [PubMed] [Google Scholar]
- Brinton E. A., Eisenberg S., Breslow J. L. Elevated high density lipoprotein cholesterol levels correlate with decreased apolipoprotein A-I and A-II fractional catabolic rate in women. J Clin Invest. 1989 Jul;84(1):262–269. doi: 10.1172/JCI114149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinton E. A., Eisenberg S., Breslow J. L. Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia. J Clin Invest. 1991 Feb;87(2):536–544. doi: 10.1172/JCI115028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chajek-Shaul T., Hayek T., Walsh A., Breslow J. L. Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6731–6735. doi: 10.1073/pnas.88.15.6731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Deckelbaum R. J., Granot E., Oschry Y., Rose L., Eisenberg S. Plasma triglyceride determines structure-composition in low and high density lipoproteins. Arteriosclerosis. 1984 May-Jun;4(3):225–231. doi: 10.1161/01.atv.4.3.225. [DOI] [PubMed] [Google Scholar]
- Falko J. M., Witztum J. L., Schonfeld G., Bateman J. Dietary treatment of type V hyperlipoproteinemia fails to normalize low levels of high-density lipoprotein cholesterol. Ann Intern Med. 1979 Nov;91(5):750–751. doi: 10.7326/0003-4819-91-5-750. [DOI] [PubMed] [Google Scholar]
- Glass C. K., Pittman R. C., Keller G. A., Steinberg D. Tissue sites of degradation of apoprotein A-I in the rat. J Biol Chem. 1983 Jun 10;258(11):7161–7167. [PubMed] [Google Scholar]
- Goldberg I. J., Blaner W. S., Vanni T. M., Moukides M., Ramakrishnan R. Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. Studies in normal and lipoprotein lipase-inhibited monkeys. J Clin Invest. 1990 Aug;86(2):463–473. doi: 10.1172/JCI114732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon T., Castelli W. P., Hjortland M. C., Kannel W. B., Dawber T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977 May;62(5):707–714. doi: 10.1016/0002-9343(77)90874-9. [DOI] [PubMed] [Google Scholar]
- Ha Y. C., Barter P. J. Effects of sucrose feeding and injection of lipid transfer protein on rat plasma lipoproteins. Comp Biochem Physiol B. 1986;83(2):463–466. doi: 10.1016/0305-0491(86)90396-2. [DOI] [PubMed] [Google Scholar]
- Hayek T., Chajek-Shaul T., Walsh A., Agellon L. B., Moulin P., Tall A. R., Breslow J. L. An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels. J Clin Invest. 1992 Aug;90(2):505–510. doi: 10.1172/JCI115887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayek T., Chajek-Shaul T., Walsh A., Azrolan N., Breslow J. L. Probucol decreases apolipoprotein A-I transport rate and increases high density lipoprotein cholesteryl ester fractional catabolic rate in control and human apolipoprotein A-I transgenic mice. Arterioscler Thromb. 1991 Sep-Oct;11(5):1295–1302. doi: 10.1161/01.atv.11.5.1295. [DOI] [PubMed] [Google Scholar]
- Hayek T., Ito Y., Azrolan N., Verdery R. B., Aalto-Setälä K., Walsh A., Breslow J. L. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest. 1993 Apr;91(4):1665–1671. doi: 10.1172/JCI116375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkins G. J., Chang L. B., Barter P. J. Role of lipid transfers in the formation of a subpopulation of small high density lipoproteins. J Lipid Res. 1985 Feb;26(2):218–229. [PubMed] [Google Scholar]
- Hulley S. B., Rosenman R. H., Bawol R. D., Brand R. J. Epidemiology as a guide to clinical decisions. The association between triglyceride and coronary heart disease. N Engl J Med. 1980 Jun 19;302(25):1383–1389. doi: 10.1056/NEJM198006193022503. [DOI] [PubMed] [Google Scholar]
- Inazu A., Brown M. L., Hesler C. B., Agellon L. B., Koizumi J., Takata K., Maruhama Y., Mabuchi H., Tall A. R. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990 Nov 1;323(18):1234–1238. doi: 10.1056/NEJM199011013231803. [DOI] [PubMed] [Google Scholar]
- Ito Y., Azrolan N., O'Connell A., Walsh A., Breslow J. L. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science. 1990 Aug 17;249(4970):790–793. doi: 10.1126/science.2167514. [DOI] [PubMed] [Google Scholar]
- Jiao S., Cole T. G., Kitchens R. T., Pfleger B., Schonfeld G. Genetic heterogeneity of lipoproteins in inbred strains of mice: analysis by gel-permeation chromatography. Metabolism. 1990 Feb;39(2):155–160. doi: 10.1016/0026-0495(90)90069-o. [DOI] [PubMed] [Google Scholar]
- Kekki M. Lipoprotein-lipase action determining plasma high density lipoprotein cholesterol level in adult normolipaemics. Atherosclerosis. 1980 Sep;37(1):143–150. doi: 10.1016/0021-9150(80)90102-1. [DOI] [PubMed] [Google Scholar]
- Koizumi J., Inazu A., Yagi K., Koizumi I., Uno Y., Kajinami K., Miyamoto S., Moulin P., Tall A. R., Mabuchi H. Serum lipoprotein lipid concentration and composition in homozygous and heterozygous patients with cholesteryl ester transfer protein deficiency. Atherosclerosis. 1991 Oct;90(2-3):189–196. doi: 10.1016/0021-9150(91)90114-i. [DOI] [PubMed] [Google Scholar]
- Kuusi T., Saarinen P., Nikkilä E. A. Evidence for the role of hepatic endothelial lipase in the metabolism of plasma high density lipoprotein2 in man. Atherosclerosis. 1980 Aug;36(4):589–593. doi: 10.1016/0021-9150(80)90251-8. [DOI] [PubMed] [Google Scholar]
- MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
- Mann C. J., Yen F. T., Grant A. M., Bihain B. E. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest. 1991 Dec;88(6):2059–2066. doi: 10.1172/JCI115535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcel Y. L., McPherson R., Hogue M., Czarnecka H., Zawadzki Z., Weech P. K., Whitlock M. E., Tall A. R., Milne R. W. Distribution and concentration of cholesteryl ester transfer protein in plasma of normolipemic subjects. J Clin Invest. 1990 Jan;85(1):10–17. doi: 10.1172/JCI114397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marotti K. R., Castle C. K., Murray R. W., Rehberg E. F., Polites H. G., Melchior G. W. The role of cholesteryl ester transfer protein in primate apolipoprotein A-I metabolism. Insights from studies with transgenic mice. Arterioscler Thromb. 1992 Jun;12(6):736–744. doi: 10.1161/01.atv.12.6.736. [DOI] [PubMed] [Google Scholar]
- Nikkilä E. A., Taskinen M. R., Sane T. Plasma high-density lipoprotein concentration and subfraction distribution in relation to triglyceride metabolism. Am Heart J. 1987 Feb;113(2 Pt 2):543–548. doi: 10.1016/0002-8703(87)90629-6. [DOI] [PubMed] [Google Scholar]
- Richards E. G., Grundy S. M., Cooper K. Influence of plasma triglycerides on lipoprotein patterns in normal subjects and in patients with coronary artery disease. Am J Cardiol. 1989 May 15;63(17):1214–1220. doi: 10.1016/0002-9149(89)90181-1. [DOI] [PubMed] [Google Scholar]
- Rubin E. M., Ishida B. Y., Clift S. M., Krauss R. M. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):434–438. doi: 10.1073/pnas.88.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaefer E. J., Levy R. I., Anderson D. W., Danner R. N., Brewer H. B., Jr, Blackwelder W. C. Plasma-triglycerides in regulation of H.D.L.-cholesterol levels. Lancet. 1978 Aug 19;2(8086):391–393. doi: 10.1016/s0140-6736(78)91863-9. [DOI] [PubMed] [Google Scholar]
- Schuler G., Hambrecht R., Schlierf G., Niebauer J., Hauer K., Neumann J., Hoberg E., Drinkmann A., Bacher F., Grunze M. Regular physical exercise and low-fat diet. Effects on progression of coronary artery disease. Circulation. 1992 Jul;86(1):1–11. doi: 10.1161/01.cir.86.1.1. [DOI] [PubMed] [Google Scholar]
- Stein Y., Dabach Y., Hollander G., Halperin G., Stein O. Metabolism of HDL-cholesteryl ester in the rat, studied with a nonhydrolyzable analog, cholesteryl linoleyl ether. Biochim Biophys Acta. 1983 Jun 16;752(1):98–105. doi: 10.1016/0005-2760(83)90237-0. [DOI] [PubMed] [Google Scholar]
- Tall A. R. Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. J Clin Invest. 1990 Aug;86(2):379–384. doi: 10.1172/JCI114722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verdery R. B., Benham D. F., Baldwin H. L., Goldberg A. P., Nichols A. V. Measurement of normative HDL subfraction cholesterol levels by Gaussian summation analysis of gradient gels. J Lipid Res. 1989 Jul;30(7):1085–1095. [PubMed] [Google Scholar]
- Walsh A., Azrolan N., Wang K., Marcigliano A., O'Connell A., Breslow J. L. Intestinal expression of the human apoA-I gene in transgenic mice is controlled by a DNA region 3' to the gene in the promoter of the adjacent convergently transcribed apoC-III gene. J Lipid Res. 1993 Apr;34(4):617–623. [PubMed] [Google Scholar]
- Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
- Witztum J. L., Dillingham M. A., Giese W., Bateman J., Diekman C., Blaufuss E. K., Weidman S., Schonfeld G. Normalization on triglycerides in type IV hyperlipoproteinemia fails to correct low levels of high-density-lipoprotein cholesterol. N Engl J Med. 1980 Oct 16;303(16):907–914. doi: 10.1056/NEJM198010163031603. [DOI] [PubMed] [Google Scholar]