Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Dec 2;123(6):1761–1775. doi: 10.1083/jcb.123.6.1761

WIF-B cells: an in vitro model for studies of hepatocyte polarity

PMCID: PMC2290861  PMID: 7506266

Abstract

We have evaluated the utility of the hepatoma-derived hybrid cell line, WIF-B, for in vitro studies of polarized hepatocyte functions. The majority (> 70%) of cells in confluent culture formed closed spaces with adjacent cells. These bile canalicular-like spaces (BC) accumulated fluorescein, a property of bile canaliculi in vivo. By indirect immunofluorescence, six plasma membrane (PM) proteins showed polarized distributions similar to rat hepatocytes in situ. Four apical PM proteins were concentrated in the BC membrane of WIF-B cells. Microtubules radiated from the BC (apical) membrane, and actin and foci of gamma-tubulin were concentrated in this region. The tight junction- associated protein ZO-1 was present in belts marking the boundary between apical and basolateral PM domains. We explored the functional properties of this boundary in living cells using fluorescent membrane lipid analogs and soluble tracers. When cells were incubated at 4 degrees C with a fluorescent analog of sphingomyelin, only the basolateral PM was labeled. In contrast, when both PM domains were labeled by de novo synthesis of fluorescent sphingomyelin from ceramide, fluorescent lipid could only be removed from the basolateral domain. These data demonstrate the presence of a barrier to the lateral diffusion of lipids between the PM domains. However, small soluble FITC- dextrans (4,400 mol wt) were able to diffuse into BC, while larger FITC- dextrans were restricted to various degrees depending on their size and incubation temperature. At 4 degrees C, the surface labeling reagent sNHS-LC-biotin (557 mol wt) had access to the entire PM, but streptavidin (60,000 mol wt), which binds to biotinylated molecules, was restricted to only the basolateral domain. Such differential accessibility of well-characterized probes can be used to mark each membrane domain separately. These results show that WIF-B cells are a suitable model to study membrane trafficking and targeting in hepatocytes in vitro.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achler C., Filmer D., Merte C., Drenckhahn D. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J Cell Biol. 1989 Jul;109(1):179–189. doi: 10.1083/jcb.109.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. M., Stevenson B. R., Jesaitis L. A., Goodenough D. A., Mooseker M. S. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol. 1988 Apr;106(4):1141–1149. doi: 10.1083/jcb.106.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bacallao R., Antony C., Dotti C., Karsenti E., Stelzer E. H., Simons K. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol. 1989 Dec;109(6 Pt 1):2817–2832. doi: 10.1083/jcb.109.6.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailyes E. M., Soos M., Jackson P., Newby A. C., Siddle K., Luzio J. P. The existence and properties of two dimers of rat liver ecto-5'-nucleotidase. Biochem J. 1984 Jul 15;221(2):369–377. doi: 10.1042/bj2210369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barr V. A., Hubbard A. L. Newly synthesized hepatocyte plasma membrane proteins are transported in transcytotic vesicles in the bile duct-ligated rat. Gastroenterology. 1993 Aug;105(2):554–571. doi: 10.1016/0016-5085(93)90734-t. [DOI] [PubMed] [Google Scholar]
  6. Bartles J. R., Braiterman L. T., Hubbard A. L. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane. J Biol Chem. 1985 Oct 15;260(23):12792–12802. [PubMed] [Google Scholar]
  7. Bartles J. R., Braiterman L. T., Hubbard A. L. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane. J Cell Biol. 1985 Apr;100(4):1126–1138. doi: 10.1083/jcb.100.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bartles J. R., Feracci H. M., Stieger B., Hubbard A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol. 1987 Sep;105(3):1241–1251. doi: 10.1083/jcb.105.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bartles J. R., Hubbard A. L. Biogenesis of the rat hepatocyte plasma membrane. Methods Enzymol. 1990;191:825–841. doi: 10.1016/0076-6879(90)91050-g. [DOI] [PubMed] [Google Scholar]
  10. Bhathal P. S., Christie G. S. Intravital fluorescence microscopy of the terminal and subterminal portions of the biliary tree of normal guinea pigs and rats. Lab Invest. 1969 May;20(5):472–479. [PubMed] [Google Scholar]
  11. Bradley S. E., Herz R. Permselectivity of biliary canalicular membrane in rats: clearance probe analysis. Am J Physiol. 1978 Nov;235(5):E570–E576. doi: 10.1152/ajpendo.1978.235.5.E570. [DOI] [PubMed] [Google Scholar]
  12. Buendia B., Bré M. H., Griffiths G., Karsenti E. Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J Cell Biol. 1990 Apr;110(4):1123–1135. doi: 10.1083/jcb.110.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cassio D., Hamon-Benais C., Guérin M., Lecoq O. Hybrid cell lines constitute a potential reservoir of polarized cells: isolation and study of highly differentiated hepatoma-derived hybrid cells able to form functional bile canaliculi in vitro. J Cell Biol. 1991 Dec;115(5):1397–1408. doi: 10.1083/jcb.115.5.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chiu J. H., Hu C. P., Lui W. Y., Lo S. C., Chang C. M. The formation of bile canaliculi in human hepatoma cell lines. Hepatology. 1990 May;11(5):834–842. doi: 10.1002/hep.1840110519. [DOI] [PubMed] [Google Scholar]
  15. Citi S. The molecular organization of tight junctions. J Cell Biol. 1993 May;121(3):485–489. doi: 10.1083/jcb.121.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dragsten P. R., Blumenthal R., Handler J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature. 1981 Dec 24;294(5843):718–722. doi: 10.1038/294718a0. [DOI] [PubMed] [Google Scholar]
  18. Durand-Schneider A. M., Bouanga J. C., Feldmann G., Maurice M. Microtubule disruption interferes with the structural and functional integrity of the apical pole in primary cultures of rat hepatocytes. Eur J Cell Biol. 1991 Dec;56(2):260–268. [PubMed] [Google Scholar]
  19. Edidin M. Patches, posts and fences: proteins and plasma membrane domains. Trends Cell Biol. 1992 Dec;2(12):376–380. doi: 10.1016/0962-8924(92)90050-w. [DOI] [PubMed] [Google Scholar]
  20. French S. W., Okanoue T., Swierenga S. H., Marceau N. The cytoskeleton of hepatocytes in health and disease. Monogr Pathol. 1987;(28):95–112. [PubMed] [Google Scholar]
  21. Gilbert T., Le Bivic A., Quaroni A., Rodriguez-Boulan E. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J Cell Biol. 1991 Apr;113(2):275–288. doi: 10.1083/jcb.113.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. HANZON V. Liver cell secretion under normal and pathologic conditions studied by fluorescence microscopy on living rats. Acta Physiol Scand Suppl. 1952;28(101):1–268. [PubMed] [Google Scholar]
  23. Higgins J. A., Evans W. H. Transverse organization of phospholipids across the bilayer of plasma-membrane subfractions of rat hepatocytes. Biochem J. 1978 Aug 15;174(2):563–567. doi: 10.1042/bj1740563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hoppe C. A., Connolly T. P., Hubbard A. L. Transcellular transport of polymeric IgA in the rat hepatocyte: biochemical and morphological characterization of the transport pathway. J Cell Biol. 1985 Dec;101(6):2113–2123. doi: 10.1083/jcb.101.6.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hubbard A. L., Bartles J. R., Braiterman L. T. Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol. 1985 Apr;100(4):1115–1125. doi: 10.1083/jcb.100.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hunziker W., Mâle P., Mellman I. Differential microtubule requirements for transcytosis in MDCK cells. EMBO J. 1990 Nov;9(11):3515–3525. doi: 10.1002/j.1460-2075.1990.tb07560.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ishii M., Washioka H., Tonosaki A., Toyota T. Regional orientation of actin filaments in the pericanalicular cytoplasm of rat hepatocytes. Gastroenterology. 1991 Dec;101(6):1663–1672. doi: 10.1016/0016-5085(91)90406-b. [DOI] [PubMed] [Google Scholar]
  28. Ishikawa T., Müller M., Klünemann C., Schaub T., Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279–19286. [PubMed] [Google Scholar]
  29. Itoh M., Nagafuchi A., Yonemura S., Kitani-Yasuda T., Tsukita S., Tsukita S. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol. 1993 May;121(3):491–502. doi: 10.1083/jcb.121.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Joshi H. C., Palacios M. J., McNamara L., Cleveland D. W. Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992 Mar 5;356(6364):80–83. doi: 10.1038/356080a0. [DOI] [PubMed] [Google Scholar]
  31. Katsuya H., Ishimaru Y., Koono M., Hayashi H. A light and electron microscopic study on complete dissociation of rat ascites hepatoma cells under activation of neutral protease and calcium depletion. Virchows Arch B Cell Pathol. 1978 Mar 29;27(2):159–172. doi: 10.1007/BF02888991. [DOI] [PubMed] [Google Scholar]
  32. Kitamura T., Jansen P., Hardenbrook C., Kamimoto Y., Gatmaitan Z., Arias I. M. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci U S A. 1990 May;87(9):3557–3561. doi: 10.1073/pnas.87.9.3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Koval M., Pagano R. E. Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta. 1991 Mar 12;1082(2):113–125. doi: 10.1016/0005-2760(91)90184-j. [DOI] [PubMed] [Google Scholar]
  34. Koval M., Pagano R. E. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts. J Cell Biol. 1990 Aug;111(2):429–442. doi: 10.1083/jcb.111.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lake J. R., Licko V., Van Dyke R. W., Scharschmidt B. F. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. Role of transcellular vesicular transport. J Clin Invest. 1985 Aug;76(2):676–684. doi: 10.1172/JCI112021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Le Bivic A., Hirn M., Reggio H. HT-29 cells are an in vitro model for the generation of cell polarity in epithelia during embryonic differentiation. Proc Natl Acad Sci U S A. 1988 Jan;85(1):136–140. doi: 10.1073/pnas.85.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lipsky N. G., Pagano R. E. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc Natl Acad Sci U S A. 1983 May;80(9):2608–2612. doi: 10.1073/pnas.80.9.2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lowe P. J., Miyai K., Steinbach J. H., Hardison W. G. Hormonal regulation of hepatocyte tight junctional permeability. Am J Physiol. 1988 Oct;255(4 Pt 1):G454–G461. doi: 10.1152/ajpgi.1988.255.4.G454. [DOI] [PubMed] [Google Scholar]
  40. Mandel L. J., Bacallao R., Zampighi G. Uncoupling of the molecular 'fence' and paracellular 'gate' functions in epithelial tight junctions. Nature. 1993 Feb 11;361(6412):552–555. doi: 10.1038/361552a0. [DOI] [PubMed] [Google Scholar]
  41. Matter K., Bucher K., Hauri H. P. Microtubule perturbation retards both the direct and the indirect apical pathway but does not affect sorting of plasma membrane proteins in intestinal epithelial cells (Caco-2). EMBO J. 1990 Oct;9(10):3163–3170. doi: 10.1002/j.1460-2075.1990.tb07514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Maurice M., Rogier E., Cassio D., Feldmann G. Formation of plasma membrane domains in rat hepatocytes and hepatoma cell lines in culture. J Cell Sci. 1988 May;90(Pt 1):79–92. doi: 10.1242/jcs.90.1.79. [DOI] [PubMed] [Google Scholar]
  43. Mével-Ninio M., Weiss M. C. Immunofluorescence analysis of the time-course of extinction, reexpression, and activation of albumin production in rat hepatoma-mouse fibroblast heterokaryons and hybrids. J Cell Biol. 1981 Aug;90(2):339–350. doi: 10.1083/jcb.90.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nathanson M. H., Boyer J. L. Mechanisms and regulation of bile secretion. Hepatology. 1991 Sep;14(3):551–566. [PubMed] [Google Scholar]
  45. Nathanson M. H., Gautam A., Ng O. C., Bruck R., Boyer J. L. Hormonal regulation of paracellular permeability in isolated rat hepatocyte couplets. Am J Physiol. 1992 Jun;262(6 Pt 1):G1079–G1086. doi: 10.1152/ajpgi.1992.262.6.G1079. [DOI] [PubMed] [Google Scholar]
  46. Oda M., Price V. M., Fisher M. M., Phillips M. J. Ultrastructure of bile canaliculi, with special reference to the surface coat and the pericanalicular web. Lab Invest. 1974 Oct;31(4):314–323. [PubMed] [Google Scholar]
  47. Oude Elferink R. P., Ottenhoff R., Liefting W. G., Schoemaker B., Groen A. K., Jansen P. L. ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes. Am J Physiol. 1990 May;258(5 Pt 1):G699–G706. doi: 10.1152/ajpgi.1990.258.5.G699. [DOI] [PubMed] [Google Scholar]
  48. Pagano R. E., Martin O. C. A series of fluorescent N-acylsphingosines: synthesis, physical properties, and studies in cultured cells. Biochemistry. 1988 Jun 14;27(12):4439–4445. doi: 10.1021/bi00412a034. [DOI] [PubMed] [Google Scholar]
  49. Pagano R. E. The Golgi apparatus: insights from lipid biochemistry. Biochem Soc Trans. 1990 Jun;18(3):361–366. doi: 10.1042/bst0180361. [DOI] [PubMed] [Google Scholar]
  50. Phillips M. J., Oshio C., Miyairi M., Smith C. R. Intrahepatic cholestasis as a canalicular motility disorder. Evidence using cytochalasin. Lab Invest. 1983 Feb;48(2):205–211. [PubMed] [Google Scholar]
  51. Pisam M., Ripoche P. Redistribution of surface macromolecules in dissociated epithelial cells. J Cell Biol. 1976 Dec;71(3):907–920. doi: 10.1083/jcb.71.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Porvaznik M., Johnson R. G., Sheridan J. D. Intercellular junctions and other cell surface differentiations of H4-IIE hepatoma cells in vitro. J Ultrastruct Res. 1976 Jun;55(3):343–359. doi: 10.1016/s0022-5320(76)80092-5. [DOI] [PubMed] [Google Scholar]
  53. Rindler M. J., Ivanov I. E., Sabatini D. D. Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells. J Cell Biol. 1987 Feb;104(2):231–241. doi: 10.1083/jcb.104.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rodriguez-Boulan E., Salas P. J., Sargiacomo M., Lisanti M., Lebivic A., Sambuy Y., Vega-Salas D., Graeve L. Methods to estimate the polarized distribution of surface antigens in cultured epithelial cells. Methods Cell Biol. 1989;32:37–56. doi: 10.1016/s0091-679x(08)61166-8. [DOI] [PubMed] [Google Scholar]
  55. Rogier E., Cassio D., Weiss M. C., Feldmann G. An ultrastructural study of rat hepatoma cells in culture, their variants and revertants. Differentiation. 1986;30(3):229–236. doi: 10.1111/j.1432-0436.1986.tb00785.x. [DOI] [PubMed] [Google Scholar]
  56. Rosenwald A. G., Pagano R. E. Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. Adv Lipid Res. 1993;26:101–118. [PubMed] [Google Scholar]
  57. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sargiacomo M., Lisanti M., Graeve L., Le Bivic A., Rodriguez-Boulan E. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J Membr Biol. 1989 Mar;107(3):277–286. doi: 10.1007/BF01871942. [DOI] [PubMed] [Google Scholar]
  59. Schell M. J., Maurice M., Stieger B., Hubbard A. L. 5'nucleotidase is sorted to the apical domain of hepatocytes via an indirect route. J Cell Biol. 1992 Dec;119(5):1173–1182. doi: 10.1083/jcb.119.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Schneeberger E. E., Lynch R. D. Structure, function, and regulation of cellular tight junctions. Am J Physiol. 1992 Jun;262(6 Pt 1):L647–L661. doi: 10.1152/ajplung.1992.262.6.L647. [DOI] [PubMed] [Google Scholar]
  61. Scott L. J., Hubbard A. L. Dynamics of four rat liver plasma membrane proteins and polymeric IgA receptor. Rates of synthesis and selective loss into the bile. J Biol Chem. 1992 Mar 25;267(9):6099–6106. [PubMed] [Google Scholar]
  62. Sellinger M., Boyer J. L. Physiology of bile secretion and cholestasis. Prog Liver Dis. 1990;9:237–259. [PubMed] [Google Scholar]
  63. Siddle K., Bailyes E. M., Luzio J. P. A monoclonal antibody inhibiting rat liver 5'-nucleotidase. FEBS Lett. 1981 Jun 1;128(1):103–107. doi: 10.1016/0014-5793(81)81091-5. [DOI] [PubMed] [Google Scholar]
  64. Spiegel S., Blumenthal R., Fishman P. H., Handler J. S. Gangliosides do not move from apical to basolateral plasma membrane in cultured epithelial cells. Biochim Biophys Acta. 1985 Dec 5;821(2):310–318. doi: 10.1016/0005-2736(85)90101-4. [DOI] [PubMed] [Google Scholar]
  65. Stearns T., Evans L., Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991 May 31;65(5):825–836. doi: 10.1016/0092-8674(91)90390-k. [DOI] [PubMed] [Google Scholar]
  66. Stevenson B. R., Goodenough D. A. Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterization. J Cell Biol. 1984 Apr;98(4):1209–1221. doi: 10.1083/jcb.98.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Stevenson B. R., Siliciano J. D., Mooseker M. S., Goodenough D. A. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986 Sep;103(3):755–766. doi: 10.1083/jcb.103.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tsukada N., Phillips M. J. Bile canalicular contraction is coincident with reorganization of pericanalicular filaments and co-localization of actin and myosin-II. J Histochem Cytochem. 1993 Mar;41(3):353–363. doi: 10.1177/41.3.7679126. [DOI] [PubMed] [Google Scholar]
  69. Vega-Salas D. E., Salas P. J., Rodriguez-Boulan E. Modulation of the expression of an apical plasma membrane protein of Madin-Darby canine kidney epithelial cells: cell-cell interactions control the appearance of a novel intracellular storage compartment. J Cell Biol. 1987 May;104(5):1249–1259. doi: 10.1083/jcb.104.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Watanabe N., Tsukada N., Smith C. R., Phillips M. J. Motility of bile canaliculi in the living animal: implications for bile flow. J Cell Biol. 1991 Jun;113(5):1069–1080. doi: 10.1083/jcb.113.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. van 't Hof W., van Meer G. Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. J Cell Biol. 1990 Sep;111(3):977–986. doi: 10.1083/jcb.111.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. van Meer G., Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 1986 Jul;5(7):1455–1464. doi: 10.1002/j.1460-2075.1986.tb04382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. van Meer G., Stelzer E. H., Wijnaendts-van-Resandt R. W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol. 1987 Oct;105(4):1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES