Abstract
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker B. F., Duhm J. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions. J Physiol. 1978 Sep;282:149–168. doi: 10.1113/jphysiol.1978.sp012454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boron W. F., McCormick W. C., Roos A. pH regulation in barnacle muscle fibers: dependence on intracellular and extracellular pH. Am J Physiol. 1979 Sep;237(3):C185–C193. doi: 10.1152/ajpcell.1979.237.3.C185. [DOI] [PubMed] [Google Scholar]
- Boron W. F., Russell J. M., Brodwick M. S., Keifer D. W., Roos A. Influence of cyclic AMP on intracellular pH regulation and chloride fluxes in barnacle muscle fibers. Nature. 1978 Nov 30;276(5687):511–513. doi: 10.1038/276511a0. [DOI] [PubMed] [Google Scholar]
- Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody W. J., Jr The ionic mechanism of intracellular pH regulation in crayfish neurones. J Physiol. 1981 Jul;316:293–308. doi: 10.1113/jphysiol.1981.sp013788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadarajah A., Leese B., Joplin G. F. Triton X-100 scintillant for counting calcium-45 in biological fluids. Int J Appl Radiat Isot. 1969 Oct;20(10):733–735. doi: 10.1016/0020-708x(69)90071-4. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Russell J. M. ATP-Dependent chloride influx into internally dialyzed squid giant axons. J Membr Biol. 1976 Sep 17;28(4):335–349. doi: 10.1007/BF01869704. [DOI] [PubMed] [Google Scholar]
- Russell J. M., Boron W. F. Role of choloride transport in regulation of intracellular pH. Nature. 1976 Nov 4;264(5581):73–74. doi: 10.1038/264073a0. [DOI] [PubMed] [Google Scholar]
- Russell J. M. Chloride and sodium influx: a coupled uptake mechanism in the squid giant axon. J Gen Physiol. 1979 Jun;73(6):801–818. doi: 10.1085/jgp.73.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. C. Ionic mechanism of the H+ pump in a snail neurone. Nature. 1976 Jul 1;262(5563):54–55. doi: 10.1038/262054a0. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol. 1977 Dec;273(1):317–338. doi: 10.1113/jphysiol.1977.sp012096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaughan-Jones R. D. Regulation of chloride in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes. J Physiol. 1979 Oct;295:111–137. doi: 10.1113/jphysiol.1979.sp012957. [DOI] [PMC free article] [PubMed] [Google Scholar]