Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1917–1921. doi: 10.1084/jem.183.4.1917

Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy

PMCID: PMC2192499  PMID: 8666949

Abstract

We have investigated the level of TCR occupancy required to elicit different biological responses in human CTL clones specific for an influenza matrix peptide. Specific cytotoxicity could be detected at extremely low peptide concentrations (10(-12) to 10(-15) M). However, IFN-gamma production, responsiveness to IL-2 and Ca++ fluxes were observed only at peptide concentrations > 10(-9) M, while autonomous proliferation required even higher peptide concentrations. In parallel experiments we measured TCR downregulation to estimate the number of TCRs triggered. We observed that at low peptide concentrations, where only cytotoxicity is triggered, TCR downregulation was hardly detectable. Conversely, induction of IFN-gamma production and proliferation required triggering of at least 20-50% of TCRs. Taken together these results indicate that a single CTL can graduate different biological responses as a function of antigen concentration and that killing of the specific target does not necessarily result in full activation.

Full Text

The Full Text of this article is available as a PDF (366.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. A., Damico C. A., Wieties K. M., Hansen T. H., Connolly J. M. Correlation between CD8 dependency and determinant density using peptide-induced, Ld-restricted cytotoxic T lymphocytes. J Exp Med. 1991 Apr 1;173(4):849–858. doi: 10.1084/jem.173.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battegay M., Moskophidis D., Rahemtulla A., Hengartner H., Mak T. W., Zinkernagel R. M. Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J Virol. 1994 Jul;68(7):4700–4704. doi: 10.1128/jvi.68.7.4700-4704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boog C. J., Boes J., Melief C. J. Stimulation with dendritic cells decreases or obviates the CD4+ helper cell requirement in cytotoxic T lymphocyte responses. Eur J Immunol. 1988 Feb;18(2):219–223. doi: 10.1002/eji.1830180206. [DOI] [PubMed] [Google Scholar]
  4. De Bruijn M. L., Nieland J. D., Schumacher T. N., Ploegh H. L., Kast W. M., Melief C. J. Mechanisms of induction of primary virus-specific cytotoxic T lymphocyte responses. Eur J Immunol. 1992 Nov;22(11):3013–3020. doi: 10.1002/eji.1830221137. [DOI] [PubMed] [Google Scholar]
  5. De Bruijn M. L., Schumacher T. N., Nieland J. D., Ploegh H. L., Kast W. M., Melief C. J. Peptide loading of empty major histocompatibility complex molecules on RMA-S cells allows the induction of primary cytotoxic T lymphocyte responses. Eur J Immunol. 1991 Dec;21(12):2963–2970. doi: 10.1002/eji.1830211210. [DOI] [PubMed] [Google Scholar]
  6. Demotz S., Grey H. M., Sette A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science. 1990 Aug 31;249(4972):1028–1030. doi: 10.1126/science.2118680. [DOI] [PubMed] [Google Scholar]
  7. Doherty P. C., Allan W., Eichelberger M., Carding S. R. Roles of alpha beta and gamma delta T cell subsets in viral immunity. Annu Rev Immunol. 1992;10:123–151. doi: 10.1146/annurev.iy.10.040192.001011. [DOI] [PubMed] [Google Scholar]
  8. Gotch F., McMichael A., Rothbard J. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med. 1988 Dec 1;168(6):2045–2057. doi: 10.1084/jem.168.6.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harding C. V., Unanue E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1990 Aug 9;346(6284):574–576. doi: 10.1038/346574a0. [DOI] [PubMed] [Google Scholar]
  10. Inaba K., Young J. W., Steinman R. M. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med. 1987 Jul 1;166(1):182–194. doi: 10.1084/jem.166.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol. 1995 Jan 15;154(2):567–576. [PubMed] [Google Scholar]
  12. Moskophidis D., Lechner F., Pircher H., Zinkernagel R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993 Apr 22;362(6422):758–761. doi: 10.1038/362758a0. [DOI] [PubMed] [Google Scholar]
  13. Valitutti S., Dessing M., Aktories K., Gallati H., Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med. 1995 Feb 1;181(2):577–584. doi: 10.1084/jem.181.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Valitutti S., Müller S., Cella M., Padovan E., Lanzavecchia A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature. 1995 May 11;375(6527):148–151. doi: 10.1038/375148a0. [DOI] [PubMed] [Google Scholar]
  15. von Boehmer H., Haas W. Distinct Ir genes for helper and killer cells in the cytotoxic response to H-Y antigen. J Exp Med. 1979 Nov 1;150(5):1134–1142. doi: 10.1084/jem.150.5.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES