Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Apr 1;173(4):849–858. doi: 10.1084/jem.173.4.849

Correlation between CD8 dependency and determinant density using peptide-induced, Ld-restricted cytotoxic T lymphocytes

PMCID: PMC2190800  PMID: 1901079

Abstract

We have taken advantage of some unique properties of H-2Ld to investigate the determinant density requirements for cytotoxic T lymphocyte (CTL) priming versus effector function and to correlate the determinant density requirements with CD8 dependency. In a previous study (Lie, W.-R., N. B. Myers, J. Gorka, R. J. Rubocki, J. M. Connolly, and T. H. Hansen. 1990. Nature [Lond.]. 344:439), we demonstrated that culturing normal cells with peptides known to be restricted by H-2Ld led to a two- to fourfold increase in surface Ld expression. In the present study, we demonstrate the generation of Ld- restricted, peptide-specific in vitro primary CTL by culturing spleen cells with murine cytomegalovirus or tum- peptide at concentrations previously shown to result in maximum induction of Ld expression. Target cells can be sensitized for recognition by these CTL with lower dose of peptide than are required for the primary sensitization. This demonstrates differences in the determinant density requirements for priming versus effector function. The in vitro primary CTL generated with peptide can weakly lyse target cells that express the determinant endogenously, and CTL lines and clones capable of strong lysis of endogenous expressors are easily obtained. In both cases, target cells treated with exogenous peptide are lysed better than target cells expressing antigen endogenously. This suggested that there are differences in the determinant density of peptide-fed versus endogenous targets. This interpretation was substantiated when it was observed that the level of lysis of target cells expressing endogenous determinants correlated inversely with the amount of peptide required to sensitize targets for recognition by various tum- -specific CTL clones. Furthermore, simultaneous titration of both the peptide used to treat target cells and the antibody to CD8 revealed that the various CTL clones analyzed displayed widely disparate CD8 dependencies. In each case, the CD8 dependency correlated inversely with the determinant density requirement. Therefore, CD8 dependency of CTL is relative, but shows an absolute and quantitative correlation with their dependency on determinant density. These findings suggest that under physiologic conditions, where only low determinant densities are likely to be encountered, all CTL clones will show at least partial CD8 dependency.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahler D. W., Frelinger J. G., Harwell L. W., Lord E. M. Reduced tumorigenicity of a spontaneous mouse lung carcinoma following H-2 gene transfection. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4562–4566. doi: 10.1073/pnas.84.13.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernards R., Schrier P. I., Houweling A., Bos J. L., van der Eb A. J., Zijlstra M., Melief C. J. Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. 1983 Oct 27-Nov 2Nature. 305(5937):776–779. doi: 10.1038/305776a0. [DOI] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  4. Chen B. P., Madrigal A., Parham P. Cytotoxic T cell recognition of an endogenous class I HLA peptide presented by a class II HLA molecule. J Exp Med. 1990 Sep 1;172(3):779–788. doi: 10.1084/jem.172.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connolly J. M., Hansen T. H., Ingold A. L., Potter T. A. Recognition by CD8 on cytotoxic T lymphocytes is ablated by several substitutions in the class I alpha 3 domain: CD8 and the T-cell receptor recognize the same class I molecule. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2137–2141. doi: 10.1073/pnas.87.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connolly J. M., Potter T. A., Wormstall E. M., Hansen T. H. The Lyt-2 molecule recognizes residues in the class I alpha 3 domain in allogeneic cytotoxic T cell responses. J Exp Med. 1988 Jul 1;168(1):325–341. doi: 10.1084/jem.168.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Del Val M., Volkmer H., Rothbard J. B., Jonjić S., Messerle M., Schickedanz J., Reddehase M. J., Koszinowski U. H. Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. J Virol. 1988 Nov;62(11):3965–3972. doi: 10.1128/jvi.62.11.3965-3972.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deres K., Schild H., Wiesmüller K. H., Jung G., Rammensee H. G. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature. 1989 Nov 30;342(6249):561–564. doi: 10.1038/342561a0. [DOI] [PubMed] [Google Scholar]
  9. Evans G. A., Margulies D. H., Shykind B., Seidman J. G., Ozato K. Exon shuffling: mapping polymorphic determinants on hybrid mouse transplantation antigens. Nature. 1982 Dec 23;300(5894):755–757. doi: 10.1038/300755a0. [DOI] [PubMed] [Google Scholar]
  10. Goldstein S. A., Mescher M. F. Cytotoxic T cell activation by class I protein on cell-size artificial membranes: antigen density and Lyt-2/3 function. J Immunol. 1987 Apr 1;138(7):2034–2043. [PubMed] [Google Scholar]
  11. Gooding L. R. Characterization of a progressive tumor from C3H fibroblasts transformed in vitro with SV40 virus. Immunoresistance in vivo correlates with phenotypic loss of H-2Kk. J Immunol. 1982 Sep;129(3):1306–1312. [PubMed] [Google Scholar]
  12. Gorka J., McCourt D. W., Schwartz B. D. Automated synthesis of a C-terminal photoprobe using combined Fmoc and t-Boc synthesis strategies on a single automated peptide synthesizer. Pept Res. 1989 Nov-Dec;2(6):376–380. [PubMed] [Google Scholar]
  13. Gromkowski S. H., Heagy W., Sanchez-Madrid F., Springer T. A., Martz E. Blocking of CTL-mediated killing by monoclonal antibodies to LFA-1 and LYT-2,3. I. Increased susceptibility to blocking after papain treatment of target cells. J Immunol. 1983 Jun;130(6):2546–2551. [PubMed] [Google Scholar]
  14. Johnston S. C., Dustin M. L., Hibbs M. L., Springer T. A. On the species specificity of the interaction of LFA-1 with intercellular adhesion molecules. J Immunol. 1990 Aug 15;145(4):1181–1187. [PubMed] [Google Scholar]
  15. Ledbetter J. A., Rouse R. V., Micklem H. S., Herzenberg L. A. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980 Aug 1;152(2):280–295. doi: 10.1084/jem.152.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lie W. R., Myers N. B., Connolly J. M., Gorka J., Lee D. R., Hansen T. H. The specific binding of peptide ligand to Ld class I major histocompatibility complex molecules determines their antigenic structure. J Exp Med. 1991 Feb 1;173(2):449–459. doi: 10.1084/jem.173.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lie W. R., Myers N. B., Gorka J., Rubocki R. J., Connolly J. M., Hansen T. H. Peptide ligand-induced conformation and surface expression of the Ld class I MHC molecule. Nature. 1990 Mar 29;344(6265):439–441. doi: 10.1038/344439a0. [DOI] [PubMed] [Google Scholar]
  18. Lurquin C., Van Pel A., Mariamé B., De Plaen E., Szikora J. P., Janssens C., Reddehase M. J., Lejeune J., Boon T. Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell. 1989 Jul 28;58(2):293–303. doi: 10.1016/0092-8674(89)90844-1. [DOI] [PubMed] [Google Scholar]
  19. Maryanski J. L., Pala P., Corradin G., Jordan B. R., Cerottini J. C. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature. 1986 Dec 11;324(6097):578–579. doi: 10.1038/324578a0. [DOI] [PubMed] [Google Scholar]
  20. McMichael A. J., Gotch F. M., Rothbard J. HLA B37 determines an influenza A virus nucleoprotein epitope recognized by cytotoxic T lymphocytes. J Exp Med. 1986 Nov 1;164(5):1397–1406. doi: 10.1084/jem.164.5.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ozato K., Hansen T. H., Sachs D. H. Monoclonal antibodies to mouse MHC antigens. II. Antibodies to the H-2Ld antigen, the products of a third polymorphic locus of the mouse major histocompatibility complex. J Immunol. 1980 Dec;125(6):2473–2477. [PubMed] [Google Scholar]
  22. Quintáns J., Lefkovits I. Precursor cells specific to sheep red cells in nude mice. Estimation of frequency in the microculture system. Eur J Immunol. 1973 Jul;3(7):392–397. doi: 10.1002/eji.1830030704. [DOI] [PubMed] [Google Scholar]
  23. Reddehase M. J., Bühring H. J., Koszinowski U. H. Cloned long-term cytolytic T-lymphocyte line with specificity for an immediate-early membrane antigen of murine cytomegalovirus. J Virol. 1986 Jan;57(1):408–412. doi: 10.1128/jvi.57.1.408-412.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosloniec E. F., Kuhn M. H., Genyea C. A., Reed A. H., Jennings J. J., Giraldo A. A., Beisel K. W., Lerman S. P. Aggressiveness of SJL/J lymphomas correlates with absence of H-2Ds antigens. J Immunol. 1984 Feb;132(2):945–952. [PubMed] [Google Scholar]
  25. Schmidt W., Festenstein H. Resistance to cell-mediated cytotoxicity is correlated with reduction of H-2K gene products in AKR leukemia. Immunogenetics. 1982;16(3):257–264. doi: 10.1007/BF00343314. [DOI] [PubMed] [Google Scholar]
  26. Schrier P. I., Bernards R., Vaessen R. T., Houweling A., van der Eb A. J. Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. 1983 Oct 27-Nov 2Nature. 305(5937):771–775. doi: 10.1038/305771a0. [DOI] [PubMed] [Google Scholar]
  27. Shimonkevitz R., Luescher B., Cerottini J. C., MacDonald H. R. Clonal analysis of cytolytic T lymphocyte-mediated lysis of target cells with inducible antigen expression: correlation between antigen density and requirement for Lyt-2/3 function. J Immunol. 1985 Aug;135(2):892–899. [PubMed] [Google Scholar]
  28. Tanaka K., Yoshioka T., Bieberich C., Jay G. Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Annu Rev Immunol. 1988;6:359–380. doi: 10.1146/annurev.iy.06.040188.002043. [DOI] [PubMed] [Google Scholar]
  29. Wallich R., Bulbuc N., Hämmerling G. J., Katzav S., Segal S., Feldman M. Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature. 1985 May 23;315(6017):301–305. doi: 10.1038/315301a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES