Abstract
1. The effects of NG-nitro-L-arginine methyl ester (L-NAME) and NG-monomethyl-L-arginine (L-NMMA), their D-isomers, and dexamethasone on noradrenaline (NA)-induced contractions and antagonism by alpha-adrenoceptor antagonists, have been investigated in rat isolated thoracic aortic rings with/without endothelium. 2. NA produced concentration-dependent contractions of isolated aortic rings with EC50 values of 2.41 +/- 0.54 (n = 21) and 28.00 +/- 8.50 (n = 25) nM for endothelium-denuded and -intact preparations respectively. Acetylcholine (ACh) relaxed NA-precontracted rings with intact, but not those denuded of endothelium. 3. Treatment with L-NAME (1-30 microM), or L-NMMA (10-500 microM), but not their D-isomers, resulted in an endothelium-dependent enhancement of NA-induced contractions. Pre-treatment, in vitro, with 0.5 microM dexamethasone neither directly potentiated, nor influenced L-NAME-induced potentiation of NA-mediated contractions in endothelium-intact rings; however, dexamethasone pretreatment reduced EC50 values for NA, and also prevented L-NAME-induced potentiation, in denuded rings equilibrated for 5 h under resting tension. 4. In both intact and denuded rings, phentolamine, prazosin and WB 4101 shifted NA concentration-response curves to the right; L-NAME, and also L-NMMA, but not their D-isomers, reversed the blockade as indicated by significant decreases in NA dose-ratios. In denuded rings, reversal by L-NAME or L-NMMA was prevented following pretreatment with dexamethasone.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF![495](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/34a8e4a5a757/brjpharm00719-0215.png)
![496](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/a3750db89118/brjpharm00719-0216.png)
![497](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/99d1bc508800/brjpharm00719-0217.png)
![498](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/66c74218bb43/brjpharm00719-0218.png)
![499](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/e4cbd6eda3f8/brjpharm00719-0219.png)
![500](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/a3b6b45a0fa3/brjpharm00719-0220.png)
![501](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/2175695/7cbe1575d2b4/brjpharm00719-0221.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alosachie I., Godfraind T. Role of cyclic GMP in the modulation by endothelium of the adrenolytic action of prazosin in the rat isolated aorta. Br J Pharmacol. 1986 Nov;89(3):525–532. doi: 10.1111/j.1476-5381.1986.tb11152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alosachie I., Godfraind T. The modulatory role of vascular endothelium in the interaction of agonists and antagonists with alpha-adrenoceptors in the rat aorta. Br J Pharmacol. 1988 Oct;95(2):619–629. doi: 10.1111/j.1476-5381.1988.tb11684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carman-Krzan M. Role of endothelium in the binding of [3H]prazosin to the aortic alpha 1-adrenergic receptors. Eur J Pharmacol. 1985 Apr 23;111(1):137–138. doi: 10.1016/0014-2999(85)90124-4. [DOI] [PubMed] [Google Scholar]
- Carrier G. O., White R. E. Enhancement of alpha-1 and alpha-2 adrenergic agonist-induced vasoconstriction by removal of endothelium in rat aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):682–687. [PubMed] [Google Scholar]
- Collier J., Vallance P. Second messenger role for NO widens to nervous and immune systems. Trends Pharmacol Sci. 1989 Nov;10(11):427–431. doi: 10.1016/s0165-6147(89)80001-x. [DOI] [PubMed] [Google Scholar]
- Desai K. M., Sessa W. C., Vane J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature. 1991 Jun 6;351(6326):477–479. doi: 10.1038/351477a0. [DOI] [PubMed] [Google Scholar]
- Downie J. W., Slack B. E. Sensitivity to indomethacin of tetrodotoxin-resistant contractions of smooth muscle from the base of rabbit bladder. Br J Pharmacol. 1983 Jun;79(2):334–336. doi: 10.1111/j.1476-5381.1983.tb11005.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duval D., Funder J. W., Devynck M. A., Meyer H. Arterial glucocorticoid receptors: the binding of tritiated dexamethasone in rabbit aorta. Cardiovasc Res. 1977 Nov;11(6):529–535. doi: 10.1093/cvr/11.6.529. [DOI] [PubMed] [Google Scholar]
- Dwyer M. A., Bredt D. S., Snyder S. H. Nitric oxide synthase: irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo. Biochem Biophys Res Commun. 1991 May 15;176(3):1136–1141. doi: 10.1016/0006-291x(91)90403-t. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989 Jan;3(1):31–36. doi: 10.1096/fasebj.3.1.2642868. [DOI] [PubMed] [Google Scholar]
- Kalsner S. Mechanism of hydrocortisone potentiation of responses to epinephrine and norepinephrine in rabbit aorta. Circ Res. 1969 Mar;24(3):383–395. doi: 10.1161/01.res.24.3.383. [DOI] [PubMed] [Google Scholar]
- Lues I., Schümann H. J. Effect of removing the endothelial cells on the reactivity of rat aortic segments to different alpha-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 1984 Dec;328(2):160–163. doi: 10.1007/BF00512066. [DOI] [PubMed] [Google Scholar]
- Martin W., Furchgott R. F., Villani G. M., Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1986 May;237(2):529–538. [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol. 1989 Jun 1;38(11):1709–1715. doi: 10.1016/0006-2952(89)90403-6. [DOI] [PubMed] [Google Scholar]
- Mostaghim R., Thomas G., Ramwell P. W. Endothelial potentiation of relaxation response to phentolamine in rat thoracic aorta. J Pharmacol Exp Ther. 1988 Feb;244(2):475–478. [PubMed] [Google Scholar]
- Oriowo M. A., Nichols A. J., Ruffolo R. R., Jr Receptor protection studies with phenoxybenzamine indicate that a single alpha 1-adrenoceptor may be coupled to two signal transduction processes in vascular smooth muscle. Pharmacology. 1992;45(1):17–26. doi: 10.1159/000138968. [DOI] [PubMed] [Google Scholar]
- Oriowo M. A., Ruffolo R. R., Jr Activation of a single alpha-1-adrenoceptor subtype in rat aorta mobilizes intracellular and extracellular pools of calcium. Pharmacology. 1992;44(3):139–149. doi: 10.1159/000138906. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):348–352. doi: 10.1016/s0006-291x(89)80219-0. [DOI] [PubMed] [Google Scholar]
- Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos-Frendo B., Eloy L., Grünfeld J. P. Methylprednisolone-induced hypertension in the rat: evidence against the role of plasma volume changes, vasopressin and renal prostaglandin E2. J Hypertens. 1985 Oct;3(5):461–467. [PubMed] [Google Scholar]
- Rees D. D., Cellek S., Palmer R. M., Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541–547. doi: 10.1016/s0006-291x(05)80068-3. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schini V. B., Vanhoutte P. M. L-arginine evokes both endothelium-dependent and -independent relaxations in L-arginine-depleted aortas of the rat. Circ Res. 1991 Jan;68(1):209–216. doi: 10.1161/01.res.68.1.209. [DOI] [PubMed] [Google Scholar]
- Yard A. C., Kadowitz P. J. Studies on the mechanism of hydrocortisone potentiation of vasoconstrictor responses to epinephrine in the anesthetized animal. Eur J Pharmacol. 1972 Oct;20(1):1–9. doi: 10.1016/0014-2999(72)90209-9. [DOI] [PubMed] [Google Scholar]