Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):1024–1030. doi: 10.1110/ps.9.5.1024

Post-translational modification is essential for catalytic activity of nitrile hydratase.

T Murakami 1, M Nojiri 1, H Nakayama 1, M Odaka 1, M Yohda 1, N Dohmae 1, K Takio 1, T Nagamune 1, I Endo 1
PMCID: PMC2144646  PMID: 10850812

Abstract

Nitrile hydratase from Rhodococcus sp. N-771 is an alphabeta heterodimer with a nonheme ferric iron in the catalytic center. In the catalytic center, alphaCys112 and alphaCys114 are modified to a cysteine sulfinic acid (Cys-SO2H) and a cysteine sulfenic acid (Cys-SOH), respectively. To understand the function and the biogenic mechanism of these modified residues, we reconstituted the nitrile hydratase from recombinant unmodified subunits. The alphabeta complex reconstituted under argon exhibited no activity. However, it gradually gained the enzymatic activity through aerobic incubation. ESI-LC/MS analysis showed that the anaerobically reconstituted alphabeta complex did not have the modification of alphaCys112-SO2H and aerobic incubation induced the modification. The activity of the reconstituted alphabeta complex correlated with the amount of alphaCys112-SO2H. Furthermore, ESI-LC/MS analyses of the tryptic digest of the reconstituted complex, removed of ferric iron at low pH and carboxamidomethylated without reduction, suggested that alphaCys114 is modified to Cys-SOH together with the sulfinic acid modification of alphaCys112. These results suggest that alphaCys112 and alphaCys114 are spontaneously oxidized to Cys-SO2H and Cys-SOH, respectively, and alphaCys112-SO2H is responsible for the catalytic activity solely or in combination with alphaCys114-SOH.

Full Text

The Full Text of this article is available as a PDF (164.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abate C., Patel L., Rauscher F. J., 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990 Sep 7;249(4973):1157–1161. doi: 10.1126/science.2118682. [DOI] [PubMed] [Google Scholar]
  2. Ahmed S. A., Claiborne A. The streptococcal flavoprotein NADH oxidase. II. Interactions of pyridine nucleotides with reduced and oxidized enzyme forms. J Biol Chem. 1989 Nov 25;264(33):19863–19870. [PubMed] [Google Scholar]
  3. Bandyopadhyay S., Gronostajski R. M. Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. J Biol Chem. 1994 Nov 25;269(47):29949–29955. [PubMed] [Google Scholar]
  4. Bonnet D., Artaud I., Moali C., Pétré D., Mansuy D. Highly efficient control of iron-containing nitrile hydratases by stoichiometric amounts of nitric oxide and light. FEBS Lett. 1997 Jun 9;409(2):216–220. doi: 10.1016/s0014-5793(97)00511-5. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chae H. Z., Robison K., Poole L. B., Church G., Storz G., Rhee S. G. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7017–7021. doi: 10.1073/pnas.91.15.7017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi H. J., Kang S. W., Yang C. H., Rhee S. G., Ryu S. E. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol. 1998 May;5(5):400–406. doi: 10.1038/nsb0598-400. [DOI] [PubMed] [Google Scholar]
  8. Claiborne A., Miller H., Parsonage D., Ross R. P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 1993 Dec;7(15):1483–1490. doi: 10.1096/fasebj.7.15.8262333. [DOI] [PubMed] [Google Scholar]
  9. Claiborne A., Yeh J. I., Mallett T. C., Luba J., Crane E. J., 3rd, Charrier V., Parsonage D. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry. 1999 Nov 23;38(47):15407–15416. doi: 10.1021/bi992025k. [DOI] [PubMed] [Google Scholar]
  10. Costa M., Pecci L., Pensa B., Cannella C. Hydrogen peroxide involvement in the rhodanese inactivation by dithiothreitol. Biochem Biophys Res Commun. 1977 Sep 23;78(2):596–603. doi: 10.1016/0006-291x(77)90221-2. [DOI] [PubMed] [Google Scholar]
  11. Huang W., Jia J., Cummings J., Nelson M., Schneider G., Lindqvist Y. Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure. 1997 May 15;5(5):691–699. doi: 10.1016/s0969-2126(97)00223-2. [DOI] [PubMed] [Google Scholar]
  12. Ikehata O., Nishiyama M., Horinouchi S., Beppu T. Primary structure of nitrile hydratase deduced from the nucleotide sequence of a Rhodococcus species and its expression in Escherichia coli. Eur J Biochem. 1989 May 15;181(3):563–570. doi: 10.1111/j.1432-1033.1989.tb14761.x. [DOI] [PubMed] [Google Scholar]
  13. Katayama Y., Matsushita Y., Kaneko M., Kondo M., Mizuno T., Nyunoya H. Cloning of genes coding for the three subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J Bacteriol. 1998 May;180(10):2583–2589. doi: 10.1128/jb.180.10.2583-2589.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kobayashi M., Nagasawa T., Yamada H. Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol. 1992 Nov;10(11):402–408. doi: 10.1016/0167-7799(92)90283-2. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi M., Nishiyama M., Nagasawa T., Horinouchi S., Beppu T., Yamada H. Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim Biophys Acta. 1991 Dec 2;1129(1):23–33. doi: 10.1016/0167-4781(91)90208-4. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi M., Shimizu S. Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol. 1998 Aug;16(8):733–736. doi: 10.1038/nbt0898-733. [DOI] [PubMed] [Google Scholar]
  17. Kullik I., Toledano M. B., Tartaglia L. A., Storz G. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol. 1995 Mar;177(5):1275–1284. doi: 10.1128/jb.177.5.1275-1284.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lange S. J., Que L., Jr Oxygen activating nonheme iron enzymes. Curr Opin Chem Biol. 1998 Apr;2(2):159–172. doi: 10.1016/s1367-5931(98)80057-4. [DOI] [PubMed] [Google Scholar]
  19. Mayaux J. F., Cerebelaud E., Soubrier F., Faucher D., Pétré D. Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol. 1990 Dec;172(12):6764–6773. doi: 10.1128/jb.172.12.6764-6773.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McBride A. A., Klausner R. D., Howley P. M. Conserved cysteine residue in the DNA-binding domain of the bovine papillomavirus type 1 E2 protein confers redox regulation of the DNA-binding activity in vitro. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7531–7535. doi: 10.1073/pnas.89.16.7531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagamune T., Kurata H., Hirata M., Honda J., Koike H., Ikeuchi M., Inoue Y., Hirata A., Endo I. Purification of inactivated photoresponsive nitrile hydratase. Biochem Biophys Res Commun. 1990 Apr 30;168(2):437–442. doi: 10.1016/0006-291x(90)92340-6. [DOI] [PubMed] [Google Scholar]
  22. Nagashima S., Nakasako M., Dohmae N., Tsujimura M., Takio K., Odaka M., Yohda M., Kamiya N., Endo I. Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Biol. 1998 May;5(5):347–351. doi: 10.1038/nsb0598-347. [DOI] [PubMed] [Google Scholar]
  23. Nishiyama M., Horinouchi S., Kobayashi M., Nagasawa T., Yamada H., Beppu T. Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol. 1991 Apr;173(8):2465–2472. doi: 10.1128/jb.173.8.2465-2472.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Noguchi T., Honda J., Nagamune T., Sasabe H., Inoue Y., Endo I. Photosensitive nitrile hydratase intrinsically possesses nitric oxide bound to the non-heme iron center: evidence by Fourier transform infrared spectroscopy. FEBS Lett. 1995 Jan 16;358(1):9–12. doi: 10.1016/0014-5793(94)01374-a. [DOI] [PubMed] [Google Scholar]
  25. Noguchi T., Hoshino M., Tsujimura M., Odaka M., Inoue Y., Endo I. Resonance Raman evidence that photodissociation of nitric oxide from the non-heme iron center activates nitrile hydratase from Rhodococcus sp. N-771. Biochemistry. 1996 Dec 24;35(51):16777–16781. doi: 10.1021/bi961562r. [DOI] [PubMed] [Google Scholar]
  26. Nojiri M., Yohda M., Odaka M., Matsushita Y., Tsujimura M., Yoshida T., Dohmae N., Takio K., Endo I. Functional expression of nitrile hydratase in Escherichia coli: requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J Biochem. 1999 Apr;125(4):696–704. doi: 10.1093/oxfordjournals.jbchem.a022339. [DOI] [PubMed] [Google Scholar]
  27. Odaka M., Noguchi T., Nagashima S., Yohda M., Yabuki S., Hishino M., Inoue Y., Endo I. Location of the non-heme iron center on the alpha subunit of photoreactive nitrile hydratase from Rhodococcus sp. N-771. Biochem Biophys Res Commun. 1996 Apr 5;221(1):146–150. doi: 10.1006/bbrc.1996.0560. [DOI] [PubMed] [Google Scholar]
  28. Payne M. S., Wu S., Fallon R. D., Tudor G., Stieglitz B., Turner I. M., Jr, Nelson M. J. A stereoselective cobalt-containing nitrile hydratase. Biochemistry. 1997 May 6;36(18):5447–5454. doi: 10.1021/bi962794t. [DOI] [PubMed] [Google Scholar]
  29. Percival M. D., Denis D., Riendeau D., Gresser M. J. Investigation of the mechanism of non-turnover-dependent inactivation of purified human 5-lipoxygenase. Inactivation by H2O2 and inhibition by metal ions. Eur J Biochem. 1992 Nov 15;210(1):109–117. doi: 10.1111/j.1432-1033.1992.tb17397.x. [DOI] [PubMed] [Google Scholar]
  30. Poole L. B., Claiborne A. The non-flavin redox center of the streptococcal NADH peroxidase. II. Evidence for a stabilized cysteine-sulfenic acid. J Biol Chem. 1989 Jul 25;264(21):12330–12338. [PubMed] [Google Scholar]
  31. Sono Masanori, Roach Mark P., Coulter Eric D., Dawson John H. Heme-Containing Oxygenases. Chem Rev. 1996 Nov 7;96(7):2841–2888. doi: 10.1021/cr9500500. [DOI] [PubMed] [Google Scholar]
  32. Tsujimura M., Dohmae N., Odaka M., Chijimatsu M., Takio K., Yohda M., Hoshino M., Nagashima S., Endo I. Structure of the photoreactive iron center of the nitrile hydratase from Rhodococcus sp. N-771. Evidence of a novel post-translational modification in the cysteine ligand. J Biol Chem. 1997 Nov 21;272(47):29454–29459. doi: 10.1074/jbc.272.47.29454. [DOI] [PubMed] [Google Scholar]
  33. Tsujimura M., Odaka M., Nagashima S., Yohda M., Endo I. Photoreactive nitrile hydratase: the photoreaction site is located on the alpha subunit. J Biochem. 1996 Mar;119(3):407–413. doi: 10.1093/oxfordjournals.jbchem.a021256. [DOI] [PubMed] [Google Scholar]
  34. Watabe S., Kohno H., Kouyama H., Hiroi T., Yago N., Nakazawa T. Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J Biochem. 1994 Apr;115(4):648–654. doi: 10.1093/oxfordjournals.jbchem.a124390. [DOI] [PubMed] [Google Scholar]
  35. Yamada H., Kobayashi M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem. 1996 Sep;60(9):1391–1400. doi: 10.1271/bbb.60.1391. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES