Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Mar 1;120(5):1083–1091. doi: 10.1083/jcb.120.5.1083

Mapping DNA within the mammalian kinetochore

PMCID: PMC2119735  PMID: 7679671

Abstract

The location of the cis-acting DNA sequences that direct the assembly of the mammalian kinetochore is not known. A variety of circumstantial evidence, however, has led to the widespread belief that they are present throughout the kinetochore including the kinetochore outer plate. To investigate this question directly, we have used two independent methods to localize DNA in and around the mammalian kinetochore. Both methods fail to reveal DNA in the outer kinetochore plate, finding instead that the outer-most detectable DNA in the centromere is located in the inner kinetochore plate. Our results imply that the outer kinetochore plate is primarily a proteinaceous structure. It is thus unlikely that fibers observed in the outer plate correspond to chromatin, as previously assumed. Our observations suggest that current models of kinetochore structure may need to be reconsidered.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal S. K. Platinum-pyrimidine complexes for electron microscopic cytochemistry of deoxyribonucleic acid. J Histochem Cytochem. 1976 Sep;24(9):984–992. doi: 10.1177/24.9.61242. [DOI] [PubMed] [Google Scholar]
  2. Bazett-Jones D. P. Electron spectroscopic imaging of chromatin and other nucleoprotein complexes. Electron Microsc Rev. 1992;5(1):37–58. doi: 10.1016/0892-0354(92)90004-a. [DOI] [PubMed] [Google Scholar]
  3. Bernat R. L., Borisy G. G., Rothfield N. F., Earnshaw W. C. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol. 1990 Oct;111(4):1519–1533. doi: 10.1083/jcb.111.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernat R. L., Delannoy M. R., Rothfield N. F., Earnshaw W. C. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell. 1991 Sep 20;66(6):1229–1238. doi: 10.1016/0092-8674(91)90045-z. [DOI] [PubMed] [Google Scholar]
  5. Brinkley B. R., Stubblefield E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 1966;19(1):28–43. doi: 10.1007/BF00332792. [DOI] [PubMed] [Google Scholar]
  6. Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980 Oct 9;287(5782):504–509. doi: 10.1038/287504a0. [DOI] [PubMed] [Google Scholar]
  7. Comings D. E., Okada T. A. Fine structure of kinetochore in Indian muntjac. Exp Cell Res. 1971 Jul;67(1):97–110. doi: 10.1016/0014-4827(71)90625-2. [DOI] [PubMed] [Google Scholar]
  8. Danscher G. Localization of gold in biological tissue. A photochemical method for light and electronmicroscopy. Histochemistry. 1981;71(1):81–88. doi: 10.1007/BF00592572. [DOI] [PubMed] [Google Scholar]
  9. Earnshaw W. C., Halligan N., Cooke C., Rothfield N. The kinetochore is part of the metaphase chromosome scaffold. J Cell Biol. 1984 Jan;98(1):352–357. doi: 10.1083/jcb.98.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferns M. J., Hall Z. W. How many agrins does it take to make a synapse? Cell. 1992 Jul 10;70(1):1–3. doi: 10.1016/0092-8674(92)90525-h. [DOI] [PubMed] [Google Scholar]
  11. Hyman A. A., Middleton K., Centola M., Mitchison T. J., Carbon J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature. 1992 Oct 8;359(6395):533–536. doi: 10.1038/359533a0. [DOI] [PubMed] [Google Scholar]
  12. Johnson K. A., Rosenbaum J. L. The basal bodies of Chlamydomonas reinhardtii do not contain immunologically detectable DNA. Cell. 1990 Aug 24;62(4):615–619. doi: 10.1016/0092-8674(90)90105-n. [DOI] [PubMed] [Google Scholar]
  13. Kingsbury J., Koshland D. Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell. 1991 Aug 9;66(3):483–495. doi: 10.1016/0092-8674(81)90012-x. [DOI] [PubMed] [Google Scholar]
  14. Liu D. F., el-Alfy M., Leblond C. P. Visualization of DNA within mitochondria by osmium-ammine staining of mouse duodenal crypt cells. J Cell Sci. 1992 Apr;101(Pt 4):785–793. doi: 10.1242/jcs.101.4.785. [DOI] [PubMed] [Google Scholar]
  15. Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989 Nov;109(5):1963–1973. doi: 10.1083/jcb.109.5.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McEwen B. F., Arena J. T., Frank J., Rieder C. L. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J Cell Biol. 1993 Jan;120(2):301–312. doi: 10.1083/jcb.120.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olins A. L., Moyer B. A., Kim S. H., Allison D. P. Synthesis of a more stable osmium ammine electron-dense DNA stain. J Histochem Cytochem. 1989 Mar;37(3):395–398. doi: 10.1177/37.3.2465337. [DOI] [PubMed] [Google Scholar]
  18. Pepper D. A., Brinkley B. R. Tubulin nucleation and assembly in mitotic cells: evidence for nucleic acids in kinetochores and centrosomes. Cell Motil. 1980;1(1):1–15. doi: 10.1002/cm.970010102. [DOI] [PubMed] [Google Scholar]
  19. Peterson J. B., Ris H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci. 1976 Nov;22(2):219–242. doi: 10.1242/jcs.22.2.219. [DOI] [PubMed] [Google Scholar]
  20. Rattner J. B., Bazett-Jones D. P. Kinetochore structure: electron spectroscopic imaging of the kinetochore. J Cell Biol. 1989 Apr;108(4):1209–1219. doi: 10.1083/jcb.108.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rattner J. B., Branch A., Hamkalo B. A. Electron microscopy of whole mount metaphase chromosomes. Chromosoma. 1975 Nov 11;52(4):329–338. doi: 10.1007/BF00364017. [DOI] [PubMed] [Google Scholar]
  22. Rattner J. B. Organization within the mammalian kinetochore. Chromosoma. 1986;93(6):515–520. doi: 10.1007/BF00386793. [DOI] [PubMed] [Google Scholar]
  23. Rieder C. L. Localization of ribonucleoprotein in the trilaminar kinetochore of PtK1. J Ultrastruct Res. 1979 Feb;66(2):109–119. doi: 10.1016/s0022-5320(79)90128-x. [DOI] [PubMed] [Google Scholar]
  24. Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  25. Ris H., Witt P. L. Structure of the mammalian kinetochore. Chromosoma. 1981;82(2):153–170. doi: 10.1007/BF00286101. [DOI] [PubMed] [Google Scholar]
  26. Saitoh H., Tomkiel J., Cooke C. A., Ratrie H., 3rd, Maurer M., Rothfield N. F., Earnshaw W. C. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell. 1992 Jul 10;70(1):115–125. doi: 10.1016/0092-8674(92)90538-n. [DOI] [PubMed] [Google Scholar]
  27. Schulman I., Bloom K. S. Centromeres: an integrated protein/DNA complex required for chromosome movement. Annu Rev Cell Biol. 1991;7:311–336. doi: 10.1146/annurev.cb.07.110191.001523. [DOI] [PubMed] [Google Scholar]
  28. Simpson R. T. Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog Nucleic Acid Res Mol Biol. 1991;40:143–184. doi: 10.1016/s0079-6603(08)60841-7. [DOI] [PubMed] [Google Scholar]
  29. Singer M. F. Highly repeated sequences in mammalian genomes. Int Rev Cytol. 1982;76:67–112. doi: 10.1016/s0074-7696(08)61789-1. [DOI] [PubMed] [Google Scholar]
  30. Vandre D. D., Davis F. M., Rao P. N., Borisy G. G. Phosphoproteins are components of mitotic microtubule organizing centers. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4439–4443. doi: 10.1073/pnas.81.14.4439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Willard H. F. Centromeres of mammalian chromosomes. Trends Genet. 1990 Dec;6(12):410–416. doi: 10.1016/0168-9525(90)90302-m. [DOI] [PubMed] [Google Scholar]
  32. Wordeman L., Steuer E. R., Sheetz M. P., Mitchison T. Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes. J Cell Biol. 1991 Jul;114(2):285–294. doi: 10.1083/jcb.114.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zinkowski R. P., Meyne J., Brinkley B. R. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES