Abstract
The extracellular compartment where bone resorption occurs, between the osteoclast and bone matrix, is shown in this report to be actively acidified. The weak base acridine orange accumulates within this compartment but dissipates after incubation with ammonium chloride. Upon removal of ammonium chloride, the cells are able to rapidly reacidify this compartment. The highly convoluted plasma membrane of the osteoclast facing this acidic compartment (ruffled border) is shown to contain a 100-kD integral membrane protein otherwise present in limiting membranes of lysosomes and other related acidified organelles (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526; Tougard, C., D. Louvard, R. Picart, and A. Tixier-Vidal, 1985, J. Cell Biol. 100:786-793). Antibodies recognizing this 100-kD lysosomal membrane protein cross-react with a proton-pump ATPase from pig gastric mucosae (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526), therefore raising the possibility that it plays a role in the acidification of both intracellular organelles and extracellular compartments. Lysosomal enzymes are also directionally secreted by the osteoclast into the acidified extracellular compartment which can therefore be considered as the functional equivalent of a secondary lysosome with a low pH, acid hydrolases, the substrate, and a limiting membrane containing the 100-kD antigen.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Awqati Q. H + transport in urinary epithelia. Am J Physiol. 1978 Aug;235(2):F77–F88. doi: 10.1152/ajprenal.1978.235.2.F77. [DOI] [PubMed] [Google Scholar]
- Anderson R. E., Schraer H., Gay C. V. Ultrastructural immunocytochemical localization of carbonic anhydrase in normal and calcitonin-treated chick osteoclasts. Anat Rec. 1982 Sep;204(1):9–20. doi: 10.1002/ar.1092040103. [DOI] [PubMed] [Google Scholar]
- Bentfeld-Barker M. E., Bainton D. F. Cytochemical localization of arylsulfatase B in rat basophils and mast cells. J Histochem Cytochem. 1980 Oct;28(10):1055–1061. doi: 10.1177/28.10.7419898. [DOI] [PubMed] [Google Scholar]
- Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984 Feb;36(2):295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
- Courtoy P. J., Kanwar Y. S., Hynes R. O., Farquhar M. G. Fibronectin localization in the rat glomerulus. J Cell Biol. 1980 Dec;87(3 Pt 1):691–696. doi: 10.1083/jcb.87.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Courtoy P. J., Picton D. H., Farquhar M. G. Resolution and limitations of the immunoperoxidase procedure in the localization of extracellular matrix antigens. J Histochem Cytochem. 1983 Jul;31(7):945–951. doi: 10.1177/31.7.6304184. [DOI] [PubMed] [Google Scholar]
- Doty S. B., Schofield B. H. Electron microscopic localization of hydrolytic enzymes in osteoclasts. Histochem J. 1972 May;4(3):245–258. doi: 10.1007/BF01890996. [DOI] [PubMed] [Google Scholar]
- Forgac M., Cantley L., Wiedenmann B., Altstiel L., Branton D. Clathrin-coated vesicles contain an ATP-dependent proton pump. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1300–1303. doi: 10.1073/pnas.80.5.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galloway C. J., Dean G. E., Marsh M., Rudnick G., Mellman I. Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3334–3338. doi: 10.1073/pnas.80.11.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gay C. V., Ito M. B., Schraer H. Carbonic anhydrase activity in isolated osteoclasts. Metab Bone Dis Relat Res. 1983;5(1):33–39. doi: 10.1016/0221-8747(83)90048-6. [DOI] [PubMed] [Google Scholar]
- Gay C. V., Mueller W. J. Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science. 1974 Feb 1;183(4123):432–434. doi: 10.1126/science.183.4123.432. [DOI] [PubMed] [Google Scholar]
- Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldfischer S. The cytochemical demonstration of lysosomal aryl sulfatase activity by light and electron microscopy. J Histochem Cytochem. 1965 Jul-Aug;13(6):520–523. doi: 10.1177/13.6.520. [DOI] [PubMed] [Google Scholar]
- Göthlin G., Ericsson J. L. Fine structural localization of acid phosphomonoesterase in the brush border region of osteoclasts. Histochemie. 1971;28(4):337–344. doi: 10.1007/BF00702639. [DOI] [PubMed] [Google Scholar]
- Holtrop M. E., King G. J. The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res. 1977 Mar-Apr;(123):177–196. [PubMed] [Google Scholar]
- King G. J., Holtrop M. E. Actin-like filaments in bone cells of cultured mouse calvaria as demonstrated by binding to heavy meromyosin. J Cell Biol. 1975 Aug;66(2):445–451. doi: 10.1083/jcb.66.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment. J Cell Biol. 1976 Feb;68(2):287–303. doi: 10.1083/jcb.68.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucht U. Acid phosphatase of osteoclasts demonstrated by electron microscopic histochemistry. Histochemie. 1971;28(2):103–117. doi: 10.1007/BF00279855. [DOI] [PubMed] [Google Scholar]
- Marchisio P. C., Cirillo D., Naldini L., Primavera M. V., Teti A., Zambonin-Zallone A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol. 1984 Nov;99(5):1696–1705. doi: 10.1083/jcb.99.5.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
- McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
- Minkin C., Jennings J. M. Carbonic anhydrase and bone remodeling: sulfonamide inhibition of bone resorption in organ culture. Science. 1972 Jun 2;176(4038):1031–1033. doi: 10.1126/science.176.4038.1031. [DOI] [PubMed] [Google Scholar]
- Moriyama Y., Takano T., Ohkuma S. Acridine orange as a fluorescent probe for lysosomal proton pump. J Biochem. 1982 Oct;92(4):1333–1336. doi: 10.1093/oxfordjournals.jbchem.a134053. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osdoby P., Martini M. C., Caplan A. I. Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture. J Exp Zool. 1982 Dec 30;224(3):331–344. doi: 10.1002/jez.1402240306. [DOI] [PubMed] [Google Scholar]
- Peters W. H., Fleuren-Jakobs A. M., Schrijen J. J., De Pont J. J., Bonting S. L. Studies on (K+ + H+)-ATPase V. Chemical composition and molecular weight of the catalytic subunit. Biochim Biophys Acta. 1982 Sep 9;690(2):251–260. doi: 10.1016/0005-2736(82)90329-7. [DOI] [PubMed] [Google Scholar]
- Reggio H., Bainton D., Harms E., Coudrier E., Louvard D. Antibodies against lysosomal membranes reveal a 100,000-mol-wt protein that cross-reacts with purified H+,K+ ATPase from gastric mucosa. J Cell Biol. 1984 Oct;99(4 Pt 1):1511–1526. doi: 10.1083/jcb.99.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schenk R. K., Spiro D., Wiener J. Cartilage resorption in the tibial epiphyseal plate of growing rats. J Cell Biol. 1967 Jul;34(1):275–291. doi: 10.1083/jcb.34.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider D. L. The acidification of rat liver lysosomes in vitro: a role for the membranous ATPase as a proton pump. Biochem Biophys Res Commun. 1979 Mar 30;87(2):559–565. doi: 10.1016/0006-291x(79)91831-x. [DOI] [PubMed] [Google Scholar]
- Skutelsky E., Farquhar M. G. Variations in distribution of con A receptor sites and anionic groups during red blood cell differentiation in the rat. J Cell Biol. 1976 Oct;71(1):218–231. doi: 10.1083/jcb.71.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sly W. S., Hewett-Emmett D., Whyte M. P., Yu Y. S., Tashian R. E. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983 May;80(9):2752–2756. doi: 10.1073/pnas.80.9.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmetz P. R., Andersen O. S. Electrogenic proton transport in epithelial membranes. J Membr Biol. 1982;65(3):155–174. doi: 10.1007/BF01869960. [DOI] [PubMed] [Google Scholar]
- Stone D. K., Xie X. S., Racker E. An ATP-driven proton pump in clathrin-coated vesicles. J Biol Chem. 1983 Apr 10;258(7):4059–4062. [PubMed] [Google Scholar]
- Tougard C., Louvard D., Picart R., Tixier-Vidal A. Antibodies against a lysosomal membrane antigen recognize a prelysosomal compartment involved in the endocytic pathway in cultured prolactin cells. J Cell Biol. 1985 Mar;100(3):786–793. doi: 10.1083/jcb.100.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaes G. On the mechanisms of bone resorption. The action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol. 1968 Dec;39(3):676–697. doi: 10.1083/jcb.39.3.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vänänen H. K., Parvinen E. K. High active isoenzyme of carbonic anhydrase in rat calvaria osteoclasts. Immunohistochemical study. Histochemistry. 1983;78(4):481–485. doi: 10.1007/BF00496199. [DOI] [PubMed] [Google Scholar]
- Waite L. C., Volkert W. A., Kenny A. D. Inhibition of bone resorption by acetazolamide in the rat. Endocrinology. 1970 Dec;87(6):1129–1139. doi: 10.1210/endo-87-6-1129. [DOI] [PubMed] [Google Scholar]
- Wright S. D., Silverstein S. C. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature. 1984 May 24;309(5966):359–361. doi: 10.1038/309359a0. [DOI] [PubMed] [Google Scholar]
- Zambonin Zallone A., Teti A. The osteoclasts of hen medullary bone under hypocalcaemic conditions. Anat Embryol (Berl) 1981;162(4):379–392. doi: 10.1007/BF00301864. [DOI] [PubMed] [Google Scholar]
- de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]