Abstract
We have used two actin-binding proteins of the intestinal brush border, TW 260/240 and villin, to examine the effects of filament cross-linking and filament length on myosin-actin interactions. TW 260/240 is a nonerythroid spectrin that is a potent cross-linker of actin filaments. In the presence of this cross-linker we observed a concentration- dependent enhancement of skeletal muscle actomyosin ATPase activity (150-560% of control; maximum enhancement at a 1:70-80 TW 260/240:actin molar ratio). TW 260/240 did not cause a similar enhancement of either acto-heavy meromyosin (HMM) ATPase or acto-myosin subfragment-one (S1) ATPase. Villin, a Ca2+-dependent filament capping and severing protein of the intestinal microvillus, was used to generate populations of actin filaments of various lengths from less than 20 nm to 2.0 microns; (villin:actin ratios of 1:2 to 1:4,000). The effect of filament length on actomyosin ATPase was biphasic. At villin:actin molar ratios of 1:2- 25 actin-activated myosin ATPase activity was inhibited to 20-80% of control values, with maximum inhibition observed at the highest villin:actin ratio. The ATPase activities of acto-HMM and acto-S1 were also inhibited at these short filament lengths. At intermediate filament lengths generated at villin:actin ratios of 1:40-400 (average lengths 0.26-1.1 micron) an enhancement of actomyosin ATPase was observed (130-260% of controls), with a maximum enhancement at average filament lengths of 0.5 micron. The levels of actomyosin ATPase fell off to control values at low concentrations of villin where filament length distributions were almost those of controls. Unlike intact myosin, the actin-activated ATPase of neither HMM nor S1 showed an enhancement at these intermediate actin filament lengths.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonder E. M., Fishkind D. J., Mooseker M. S. Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament. Cell. 1983 Sep;34(2):491–501. doi: 10.1016/0092-8674(83)90382-3. [DOI] [PubMed] [Google Scholar]
- Bonder E. M., Mooseker M. S. Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (villin): a new actin assembly assay using the Limulus acrosomal process. J Cell Biol. 1983 Apr;96(4):1097–1107. doi: 10.1083/jcb.96.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskey E. J., Seraydarian K., Mommaerts W. F. The modification of actomyosin by alpha-actinin. II. The effect of alpha-actinin upon contractility. Biochim Biophys Acta. 1967 Apr 11;133(3):412–423. doi: 10.1016/0005-2795(67)90545-4. [DOI] [PubMed] [Google Scholar]
- Craig S. W., Powell L. D. Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Cell. 1980 Dec;22(3):739–746. doi: 10.1016/0092-8674(80)90550-4. [DOI] [PubMed] [Google Scholar]
- Dabrowska R., Goch A., Osińska H., Szpacenko A., Sosinski J. Dual effect of filamin on actomyosin ATPase activity. J Muscle Res Cell Motil. 1985 Feb;6(1):29–42. doi: 10.1007/BF00712309. [DOI] [PubMed] [Google Scholar]
- Davies P., Bechtel P., Pastan I. Filamin inhibits actin activation of heavy meromyosin ATPase. FEBS Lett. 1977 May 15;77(2):228–232. doi: 10.1016/0014-5793(77)80240-8. [DOI] [PubMed] [Google Scholar]
- Fishkind D. J., Mooseker M. S., Bonder E. M. Actin assembly and filament cross-linking in the presence of TW 260/240, the tissue-specific spectrin of the chicken intestinal brush border. Cell Motil. 1985;5(4):311–322. doi: 10.1002/cm.970050404. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Kaulfus P., Weber K. F actin assembly modulated by villin: Ca++-dependent nucleation and capping of the barbed end. Cell. 1981 May;24(2):471–480. doi: 10.1016/0092-8674(81)90338-x. [DOI] [PubMed] [Google Scholar]
- KIELLEY W. W., HARRINGTON W. F. A model for the myosin molecule. Biochim Biophys Acta. 1960 Jul 15;41:401–421. doi: 10.1016/0006-3002(60)90037-8. [DOI] [PubMed] [Google Scholar]
- Keller T. C., 3rd, Mooseker M. S. Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J Cell Biol. 1982 Dec;95(3):943–959. doi: 10.1083/jcb.95.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
- Mooseker M. S., Graves T. A., Wharton K. A., Falco N., Howe C. L. Regulation of microvillus structure: calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells. J Cell Biol. 1980 Dec;87(3 Pt 1):809–822. doi: 10.1083/jcb.87.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Pollard T. D., Fujiwara K. Characterization and localization of myosin in the brush border of intestinal epithelial cells. J Cell Biol. 1978 Nov;79(2 Pt 1):444–453. doi: 10.1083/jcb.79.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearl M., Fishkind D., Mooseker M., Keene D., Keller T., 3rd Studies on the spectrin-like protein from the intestinal brush border, TW 260/240, and characterization of its interaction with the cytoskeleton and actin. J Cell Biol. 1984 Jan;98(1):66–78. doi: 10.1083/jcb.98.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
- Seraydarian K., Briskey E. J., Mommaerts W. F. The modification of actomyosin by alpha- actinin. I. A survey of experimental conditions. Biochim Biophys Acta. 1967 Apr 11;133(3):399–411. doi: 10.1016/0005-2795(67)90544-2. [DOI] [PubMed] [Google Scholar]
- Shimo-Oka T., Ohnishi K., Watanabe Y. Further characterization of a brain high molecular weight actin-binding protein (BABP): interaction with brain actin and ultrastructural studies. J Biochem. 1983 Apr;93(4):977–987. doi: 10.1093/oxfordjournals.jbchem.a134253. [DOI] [PubMed] [Google Scholar]
- Shimo-Oka T., Watanabe Y. Stimulation of actomyosin Mg2+-ATPase activity by a brain microtubule-associated protein fraction. High-molecular-weight actin-binding protein is the stimulating factor. J Biochem. 1981 Nov;90(5):1297–1307. doi: 10.1093/oxfordjournals.jbchem.a133595. [DOI] [PubMed] [Google Scholar]
- Sosiński J., Szpacenko A., Dabrowska R. Potentiation of actomyosin ATPase activity by filamin. FEBS Lett. 1984 Dec 10;178(2):311–314. doi: 10.1016/0014-5793(84)80623-7. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
- Wagner P. D. Calcium-sensitive modulation of the actomyosin ATPase by fodrin. J Biol Chem. 1984 May 25;259(10):6306–6310. [PubMed] [Google Scholar]
- Walsh T. P., Weber A., Davis K., Bonder E., Mooseker M. Calcium dependence of villin-induced actin depolymerization. Biochemistry. 1984 Dec 4;23(25):6099–6102. doi: 10.1021/bi00320a030. [DOI] [PubMed] [Google Scholar]
- Wang Y., Bonder E. M., Mooseker M. S., Taylor D. L. Effects of villin on the polymerization and subunit exchange of actin. Cell Motil. 1983;3(2):151–165. doi: 10.1002/cm.970030205. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Pope B. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol. 1977 Apr;111(2):129–157. doi: 10.1016/s0022-2836(77)80119-8. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
- Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
- Wegner A. Subtleties of actin assembly. Nature. 1985 Jan 10;313(5998):97–98. doi: 10.1038/313097a0. [DOI] [PubMed] [Google Scholar]