Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Apr 1;93(1):103–110. doi: 10.1083/jcb.93.1.103

Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes

PMCID: PMC2112093  PMID: 7068748

Abstract

Membranes were isolated from highly purified peroxisomes, mitochondria, and rough and smooth microsomes of rat liver by the one-step Na2CO3 procedure described in the accompanying paper (1982, J. Cell Biol. 93:97-102). The polypeptide compositions of these membranes were determined by SDS PAGE and found to be greatly dissimilar. The peroxisomal membrane contains 12% of the peroxisomal protein and consists of three major polypeptides (21,700, 67,700 and 69,700 daltons) as well as some minor polypeptides. The major peroxisomal membrane proteins as well as most of the minor ones are absent from the endoplasmic reticulum (ER). Conversely, most ER proteins are absent from peroxisomes. By electron microscopy, purified peroxisomal membranes are approximately 6.8 nm thick and have a typical trilaminar appearance. The phospholipid/protein ratio of peroxisomal membranes is approximately 200 nmol/mg; the principal phospholipids are phosphatidyl choline and phosphatidyl ethanolamine as in ER and mitochondrial membranes. In contrast to the mitochondria, peroxisomal membranes contain no cardiolipin. All the membranes investigated contain a polypeptide band with a molecular mass of approximately 15,000 daltons. Whether this represents an exceptional common membrane protein or a coincidence is unknown. The implications of these results for the biogenesis of peroxisomes are discussed.

Full Text

The Full Text of this article is available as a PDF (980.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Amar-Costesec A., Beaufay H., Wibo M., Thinès-Sempoux D., Feytmans E., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. II. Preparation and composition of the microsomal fraction. J Cell Biol. 1974 Apr;61(1):201–212. doi: 10.1083/jcb.61.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amar-Costesec A., Wibo M., Thinès-Sempoux D., Beaufay H., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. IV. Biochemical, physical, and morphological modifications of microsomal components induced by digitonin, EDTA, and pyrophosphate. J Cell Biol. 1974 Sep;62(3):717–745. doi: 10.1083/jcb.62.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Baudhuin P., Evrard P., Berthet J. Electron microscopic examination of subcellular fractions. I. The preparation of representative samples from suspensions of particles. J Cell Biol. 1967 Jan;32(1):181–191. doi: 10.1083/jcb.32.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dallner G., Ernster L. Subfractionation and composition of microsomal membranes: a review. J Histochem Cytochem. 1968 Oct;16(10):611–632. doi: 10.1177/16.10.611. [DOI] [PubMed] [Google Scholar]
  7. DePierre J. W., Karnovsky M. L. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973 Feb;56(2):275–303. doi: 10.1083/jcb.56.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donaldson R. P., Tolbert N. E., Schnarrenberger C. A comparison of microbody membranes with microsomes and mitochondria from plant and animal tissue. Arch Biochem Biophys. 1972 Sep;152(1):199–215. doi: 10.1016/0003-9861(72)90208-1. [DOI] [PubMed] [Google Scholar]
  9. FRANTZ I. D., Jr, HINKELMAN B. T. Acceleration of hepatic cholesterol synthesis by triton WR-1339. J Exp Med. 1955 Mar 1;101(3):225–232. doi: 10.1084/jem.101.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRIEDMAN M., BYERS S. O. The mechanism responsible for the hypercholesteremia induced by triton WR-1339. J Exp Med. 1953 Jan;97(1):117–130. doi: 10.1084/jem.97.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fahimi H. D., Gray B. A., Herzog V. K. Cytochemical localization of catalase and peroxidase in sinusoidal cells of rat liver. Lab Invest. 1976 Feb;34(2):192–201. [PubMed] [Google Scholar]
  12. Fowler S., Remacle J., Trouet A., Beaufay H., Berthet J., Wibo M., Hauser P. Analytical study of microsomes and isolated subcellular membranes from rat liver. V. Immunological localization of cytochrome b5 by electron microscopy: methodology and application to various subcellular fractions. J Cell Biol. 1976 Nov;71(2):535–550. doi: 10.1083/jcb.71.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukushima K., Ito A., Omura T., Sato R. Occurrence of different types of cytochrome b 5 -like hemoprotein in liver mitochondria and their intramitochondrial localization. J Biochem. 1972 Mar;71(3):447–461. [PubMed] [Google Scholar]
  15. Goldman B. M., Blobel G. Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5066–5070. doi: 10.1073/pnas.75.10.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hajra A. K., Burke C. L., Jones C. L. Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J Biol Chem. 1979 Nov 10;254(21):10896–10900. [PubMed] [Google Scholar]
  17. Hayashi H., Niinobe S., Matsumoto Y., Suga T. Effects of Triton WR-1339 on lipoprotein lipolytic activity and lipid content of rat liver lysosomes. J Biochem. 1981 Feb;89(2):573–579. doi: 10.1093/oxfordjournals.jbchem.a133233. [DOI] [PubMed] [Google Scholar]
  18. Lazarow P. B., de Duve C. The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J Cell Biol. 1973 Nov;59(2 Pt 1):507–524. doi: 10.1083/jcb.59.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Legg P. G., Wood R. L. New observations on microbodies. A cytochemical study on CPIB-treated rat liver. J Cell Biol. 1970 Apr;45(1):118–129. doi: 10.1083/jcb.45.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leighton F., Poole B., Lazarow P. B., De Duve C. The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J Cell Biol. 1969 May;41(2):521–535. doi: 10.1083/jcb.41.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lodish H. F., Braell W. A., Schwartz A. L., Strous G. J., Zilberstein A. Synthesis and assembly of membrane and organelle proteins. Int Rev Cytol Suppl. 1981;12:247–307. doi: 10.1016/b978-0-12-364373-5.50016-0. [DOI] [PubMed] [Google Scholar]
  23. MAHLER H. R., HUBSCHER G., BAUM R. Studies on uricase. I. Preparation, purification, and properties of a cuproprotein. J Biol Chem. 1955 Oct;216(2):625–641. [PubMed] [Google Scholar]
  24. Novikoff P. M., Novikoff A. B., Quintana N., Davis C. Studies on microperoxisomes. 3. Observations on human and rat hepatocytes. J Histochem Cytochem. 1973 Jun;21(6):540–558. doi: 10.1177/21.6.540. [DOI] [PubMed] [Google Scholar]
  25. Redman C. M., Grab D. J., Irukulla R. The intracellular pathway of newly formed rat liver catalase. Arch Biochem Biophys. 1972 Oct;152(2):496–501. doi: 10.1016/0003-9861(72)90244-5. [DOI] [PubMed] [Google Scholar]
  26. Robbi M., Lazarow P. B. Synthesis of catalase in two cell-free protein-synthesizing systems and in rat liver. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4344–4348. doi: 10.1073/pnas.75.9.4344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shio H., Lazarow P. B. Relationship between peroxisomes and endoplasmic reticulum investigated by combined catalase and glucose-6-phosphatase cytochemistry. J Histochem Cytochem. 1981 Nov;29(11):1263–1272. doi: 10.1177/29.11.6274950. [DOI] [PubMed] [Google Scholar]
  28. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES