Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):26–44. doi: 10.1083/jcb.91.1.26

Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans

PMCID: PMC2111930  PMID: 7298721

Abstract

Taking advantage of conditions that allow spermatogenesis in vitro, the timing and sequence of morphological changes leading from the primary spermatocyte to the spermatozoon is described by light and electron microscopy. Together with previous studies, this allows a detailed description of the nuclear, cytoplasmic, and membrane changes occurring during spermatozoan morphogenesis. By comparison with wild type, abnormalities in spermatogenesis leading to aberrant infertile spermatozoa are found in six fertilization-defective (fer) mutants. In fer-1 mutant males, spermatids appear normal, but during spermiogenesis membranous organelles (MO) fail to fuse with the sperm plasma membrane and a short, though motile. pseudopod is formed. In fer-2, fer-3, and fer-4 mutants, spermatids accumulate 48-nm tubules around their nuclei where the centriole and an RNA containing perinuclear halo would normally be. In all three mutants, spermatids still activate to spermatozoa with normal fusion of their MOs, but the pseudopods formed are aberrant in most fer-2 and fer-4 spermatozoa and in some fer-3 spermatozoa. In fer-5 mutant males, spermatozoa do not form. Instead, defective spermatids with crystalline inclusions and abnormal internal laminar membranes accumulate. In fer-6 mutant males, only a few spermatozoa form and these have defective pseudopods. These spermatozoa retain their fibrous bodies, a structure which normally disassembles in the spermatid. The time of appearance of developmental abnormalities in all of these mutants correlates with the temperature-sensitive periods for development of infertility. The observation that each of these mutants has a different and discreet set of morphological defects, a structure which normally disassembles in the spermatid. The time of appearance of developmental abnormalities in all of these mutants correlates with the temperature-sensitive periods for development of infertility. The observation that each of these mutants has a different and discreet set of morphological defects, a structure which normally disassembles in the spermatid. The time of appearance of developmental abnormalities in all of these mutants correlates with the temperature- sensitive periods for development of infertility. The observation that each of these mutants has a different and discreet set of morphological defects shows that the strict sequence of morphogenetic events that occurs during wild-type spermatogenesis cannot arise because each event is dependent on previous events. Instead, spermatozoa, like bacteriophages, must be formed by multiple independent pathways of morphogenesis.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas M., Cain G. D. In vitro activation and behavior of the ameboid sperm of Ascaris suum (Nematoda). Cell Tissue Res. 1979 Aug;200(2):273–284. doi: 10.1007/BF00236419. [DOI] [PubMed] [Google Scholar]
  2. Albertson D. G., Sulston J. E., White J. G. Cell cycling and DNA replication in a mutant blocked in cell division in the nematode Caenorhabditis elegans. Dev Biol. 1978 Mar;63(1):165–178. doi: 10.1016/0012-1606(78)90122-7. [DOI] [PubMed] [Google Scholar]
  3. Argon Y., Ward S. Caenorhabditis elegans fertilization-defective mutants with abnormal sperm. Genetics. 1980 Oct;96(2):413–433. doi: 10.1093/genetics/96.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beams H. W., Sekhon S. S. Cytodifferentiation during spermiogenesis in Rhabditis pellio. J Ultrastruct Res. 1972 Mar;38(5):511–527. doi: 10.1016/0022-5320(72)90088-3. [DOI] [PubMed] [Google Scholar]
  5. Bernhard W. A new staining procedure for electron microscopical cytology. J Ultrastruct Res. 1969 May;27(3):250–265. doi: 10.1016/s0022-5320(69)80016-x. [DOI] [PubMed] [Google Scholar]
  6. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burghardt R. C., Foor W. E. Membrane fusion during spermiogenesis in Ascaris. J Ultrastruct Res. 1978 Feb;62(2):190–202. doi: 10.1016/s0022-5320(78)90032-1. [DOI] [PubMed] [Google Scholar]
  8. Chalfie M., Thomson J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol. 1979 Jul;82(1):278–289. doi: 10.1083/jcb.82.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark W. H., Jr, Moretti R. L., Thomson W. W. Histochemical and ultracytochemical studies of the spermatids and sperm of Ascaris lumbricoides var. suum. Biol Reprod. 1972 Oct;7(2):145–159. doi: 10.1093/biolreprod/7.2.145. [DOI] [PubMed] [Google Scholar]
  10. Edgar R. S., Wood W. B. Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):498–505. doi: 10.1073/pnas.55.3.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fawcett D. W. The mammalian spermatozoon. Dev Biol. 1975 Jun;44(2):394–436. doi: 10.1016/0012-1606(75)90411-x. [DOI] [PubMed] [Google Scholar]
  12. Foor W. E. Spermatozoan morphology and zygote formation in nematodes. Biol Reprod. 1970 Jun;2(Suppl):177–120. doi: 10.1095/biolreprod2.supplement_2.177. [DOI] [PubMed] [Google Scholar]
  13. Fujiwara K., Tilney L. G. Substructural analysis of the microtubule and its polymorphic forms. Ann N Y Acad Sci. 1975 Jun 30;253:27–50. doi: 10.1111/j.1749-6632.1975.tb19190.x. [DOI] [PubMed] [Google Scholar]
  14. Goldstein P. Spermatogenesis and spermiogenesis in Ascaris lumbricoides Var. suum. J Morphol. 1977 Dec;154(3):317–337. doi: 10.1002/jmor.1051540302. [DOI] [PubMed] [Google Scholar]
  15. Goldstein P., Triantaphyllou A. C. The ultrastructure of sperm development in the plant-parasitic nematode Meloidogyne hapla. J Ultrastruct Res. 1980 May;71(2):143–153. doi: 10.1016/s0022-5320(80)90102-1. [DOI] [PubMed] [Google Scholar]
  16. Hirsh D., Vanderslice R. Temperature-sensitive developmental mutants of Caenorhabditis elegans. Dev Biol. 1976 Mar;49(1):220–235. doi: 10.1016/0012-1606(76)90268-2. [DOI] [PubMed] [Google Scholar]
  17. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  19. Kaulenas M. S., Fairbairn D. RNA metabolism of fertilized Ascaris lumbricoides eggs during uterine development. Exp Cell Res. 1968 Sep;52(1):233–251. doi: 10.1016/0014-4827(68)90562-4. [DOI] [PubMed] [Google Scholar]
  20. Klass M., Wolf N., Hirsh D. Development of the male reproductive system and sexual transformation in the nematode Caenorhabditis elegans. Dev Biol. 1976 Aug;52(1):1–18. doi: 10.1016/0012-1606(76)90002-6. [DOI] [PubMed] [Google Scholar]
  21. McLaren D. J. The structure and development of the spermatozoon of Dipetalonema viteae (Nematoda: Filarioidea). Parasitology. 1973 Jun;66(3):447–463. doi: 10.1017/s0031182000046011. [DOI] [PubMed] [Google Scholar]
  22. Neill B. W., Wright K. A. Spermatogenesis in the hologonic testis of the trichuroid nematode, Capillaria hepatica (bancroft, 1893). J Ultrastruct Res. 1973 Aug;44(3):210–234. doi: 10.1016/s0022-5320(73)80057-7. [DOI] [PubMed] [Google Scholar]
  23. Nelson G. A., Ward S. Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell. 1980 Feb;19(2):457–464. doi: 10.1016/0092-8674(80)90520-6. [DOI] [PubMed] [Google Scholar]
  24. Ward S., Carrel J. S. Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev Biol. 1979 Dec;73(2):304–321. doi: 10.1016/0012-1606(79)90069-1. [DOI] [PubMed] [Google Scholar]
  25. Ward S., Miwa J. Characterization of temperature-sensitive, fertilization-defective mutants of the nematode caenorhabditis elegans. Genetics. 1978 Feb;88(2):285–303. doi: 10.1093/genetics/88.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ward S., Thomson N., White J. G., Brenner S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. J Comp Neurol. 1975 Apr 1;160(3):313–337. doi: 10.1002/cne.901600305. [DOI] [PubMed] [Google Scholar]
  27. Wolf N., Hirsh D., McIntosh J. R. Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. J Ultrastruct Res. 1978 May;63(2):155–169. doi: 10.1016/s0022-5320(78)80071-9. [DOI] [PubMed] [Google Scholar]
  28. YAMADA E. The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel) 1957;29(3):267–290. doi: 10.1159/000141169. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES