Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Apr 1;65(1):1–14. doi: 10.1083/jcb.65.1.1

Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria

PMCID: PMC2111154  PMID: 1092698

Abstract

Growing yeast spheroplasts were shown to have, on the average, four times the number of cytoplasmic ribosomes in contact with the outer mitochondrial membrane compared to starved spheroplasts. Ribosomes in contact with mitochondria in the growing spheroplast preparation, like free cytoplasmic ribosomes, exist primarily as polysome structures. In the starved spheroplast preparation, both mitochondria-bound and free cytoplasmic ribosomes exist primarily as monosomes. Mitochondria isolated from growing spheroplasts in a medium containing lmM Mg++ have cytoplasmic ribosomes bound directly to the outer membrane. These ribosomes can be quantitatively removed by washing the mitochondria with 2 mM EDTA. Mitochondria from starved spheroplasts are capable of accepting either free cytoplasmic polysomes or cytoplasmic polysomes extracted from mitochondria. However, the extent of polysome binding to mitochondria was shown to be a direct function of the Mg++ concentration; a smaller percentage of the input polysomes bind as the Mg++ concentration is lowered. At 1 mM Mg++, neither free cytoplasmic nor mitochondria-bound polysomes bind to mitochondria. Nevertheless, when growing spheroplasts are broken and mitochondria isolated in medium containing 1 mM Mg++, the mitochondria are seen to have cytoplasmic ribosomes firmly attached to the outer membrane. This result, in addition to our earlier data (Kellems, R. E., and R. A. Butow. 1974. J. Biol. Chem. 249:3304-3310), support the view that cytoplasmic ribosomes attached to the outer membrane of purified mitochondria were attached in vivo. In preparations of mitochondria isolated from growing spheroplasts, ribosomes appear to be found to specific regions of the outer membrane, namely those regions which are in close association or in contact with the inner mitochondrial membrane. This is particularly evident with mitochondria in a condensed configuration. This finding suggests a mechanism whereby cytoplasmically synthesized mitochondrial protein could be transferred by a process of vectorial translation across both membranes of the organelle.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman M. R., Sabatini D. D., Blobel G. Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components. J Cell Biol. 1973 Jan;56(1):206–229. doi: 10.1083/jcb.56.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borgese N., Mok W., Kreibich G., Sabatini D. D. Ribosomal-membrane interaction: in vitro binding of ribosomes to microsomal membranes. J Mol Biol. 1974 Sep 25;88(3):559–580. doi: 10.1016/0022-2836(74)90408-2. [DOI] [PubMed] [Google Scholar]
  3. CAMPBELL P. N., GREENGARD O., KERNOT B. A. Studies on the synthesis o serum albumin by the isolated microsome fraction from rat liver. Biochem J. 1960 Jan;74:107–117. doi: 10.1042/bj0740107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choi Y. S., Knopf P. M., Lennox E. S. Subcellular fractionation of mouse myeloma cells. Biochemistry. 1971 Feb 16;10(4):659–667. doi: 10.1021/bi00780a018. [DOI] [PubMed] [Google Scholar]
  5. Diegelmann R. F., Bernstein L., Peterkofsky B. Cell-free collagen synthesis on membrane-bound polysomes of chick embryo connective tissue and the localization of prolyl hydroxylase on the polysome-membrane complex. J Biol Chem. 1973 Sep 25;248(18):6514–6521. [PubMed] [Google Scholar]
  6. Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glaumann H., Ericsson J. L. Evidence for the participation of the Golgi apparatus in the intracellular transport of nascent albumin in the liver cell. J Cell Biol. 1970 Dec;47(3):555–567. doi: 10.1083/jcb.47.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glaumann H. Studies on the synthesis and transport of albumin in microsomal subfractions from rat liver. Biochim Biophys Acta. 1970 Nov 12;224(1):206–218. doi: 10.1016/0005-2787(70)90634-9. [DOI] [PubMed] [Google Scholar]
  9. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hutchison H. T., Hartwell L. H. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 1967 Nov;94(5):1697–1705. doi: 10.1128/jb.94.5.1697-1705.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ikehara Y., Pitot H. C. Localization of polysome-bound albumin and serine dehydratase in rat liver cell fractions. J Cell Biol. 1973 Oct;59(1):28–44. doi: 10.1083/jcb.59.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kellems R. E., Allison V. F., Butow R. A. Cytoplasmic type 80 S ribosomes associated with yeast mitochondria. II. Evidence for the association of cytoplasmic ribosomes with the outer mitochondrial membrane in situ. J Biol Chem. 1974 May 25;249(10):3297–3303. [PubMed] [Google Scholar]
  13. Kellems R. E., Butow R. A. Cytoplasmic type 80 S ribosomes associated with yeast mitochondria. 3. Changes in the amount of bound ribosomes in response to changes in metabolic state. J Biol Chem. 1974 May 25;249(10):3304–3310. [PubMed] [Google Scholar]
  14. Kellems R. E., Butow R. A. Cytoplasmic-type 80 S ribosomes associated with yeast mitochondria. I. Evidence for ribosome binding sites on yeast mitochondria. J Biol Chem. 1972 Dec 25;247(24):8043–8050. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lee S. Y., Krsmanovic V., Brawerman G. Attachment of ribosomes to membranes during polysome formation in mouse sarcoma 180 cells. J Cell Biol. 1971 Jun;49(3):683–691. doi: 10.1083/jcb.49.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loeb J. N., Howell R., Tomkins G. M. Free and membrane-bound ribosomes in rat liver. J Biol Chem. 1967 May 10;242(9):2069–2074. [PubMed] [Google Scholar]
  18. Nihei T. In vitro amino acid incorporation into myosin by free polysomes of rat skeletal muscle. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1139–1144. doi: 10.1016/0006-291x(71)90581-x. [DOI] [PubMed] [Google Scholar]
  19. Olsen B. R., Berg R. A., Kishida Y., Prockop D. J. Collagen synthesis: localization of prolyl hydroxylase in tendon cells detected with ferritin-labeled antibodies. Science. 1973 Nov 23;182(4114):825–827. doi: 10.1126/science.182.4114.825. [DOI] [PubMed] [Google Scholar]
  20. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  22. Peters T., Jr, Fleischer B., Fleischer S. The biosynthesis of rat serum albumin. IV. Apparent passage of albumin through the Golgi apparatus during secretion. J Biol Chem. 1971 Jan 10;246(1):240–244. [PubMed] [Google Scholar]
  23. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ragland W. L., Shires T. K., Pitot H. C. Polyribosomal attachment to rat liver and hepatoma endoplasmic reticulum in vitro. A method for its study. Biochem J. 1971 Jan;121(2):271–278. doi: 10.1042/bj1210271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
  26. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rolleston F. S., Tak-Yee-Lam Dissociation constant of 60S ribosomal subunit binding to endoplasmic reticulum membranes. Biochem Biophys Res Commun. 1974 Jul 24;59(2):467–473. doi: 10.1016/s0006-291x(74)80003-3. [DOI] [PubMed] [Google Scholar]
  28. Rolleston F. S. The binding of ribosomal subunits to endoplasmic reticulum membranes. Biochem J. 1972 Sep;129(3):721–731. doi: 10.1042/bj1290721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sherr C. J., Uhr J. W. Immunoglobulin synthesis and secretion. V. Incorporation of leucine and glucosamine into immunoglobulin on free and bound polyribosomes. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1183–1189. doi: 10.1073/pnas.66.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shires T. K., Narurkar L., Pitot H. C. The association in vitro of polyribosomes with ribonuclease-treated derivatives of hepatic rough endoplasmic reticulum. Characteristics of the membrane binding sites and factors influencing association. Biochem J. 1971 Nov;125(1):67–79. doi: 10.1042/bj1250067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shires T. K., Pitot H. C. Correlation of rat liver membrane binding of polysomes in vitro with function of the complexes formed. Biochem Biophys Res Commun. 1973 Jan 23;50(2):344–351. doi: 10.1016/0006-291x(73)90846-2. [DOI] [PubMed] [Google Scholar]
  32. Takagi M., Ogata K. Direct evidence for albumin biosynthesis by membrane bound polysomes in rat liver. Biochem Biophys Res Commun. 1968 Oct 10;33(1):55–60. doi: 10.1016/0006-291x(68)90254-4. [DOI] [PubMed] [Google Scholar]
  33. Tanaka T., Ogata K. Preferential synthesis of arginase by free polysomes from rat liver. J Biochem. 1971 Oct;70(4):693–697. doi: 10.1093/oxfordjournals.jbchem.a129683. [DOI] [PubMed] [Google Scholar]
  34. Uenoyama K., Ono T. Synthesis of albumin by the free polyribosomes in 5123 hepatoma. Biochim Biophys Acta. 1972 Sep 29;281(1):124–129. doi: 10.1016/0005-2787(72)90194-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES