Abstract
A stereological model which provides detailed quantitative information on the structure of the fasted, nonstimulated gland has been developed for the guinea pig pancreas. The model consists of morphologically defined space and membrane compartments which were used to describe the general composition of the tissue and the specific components of exocrine cells. The results are presented, where appropriate, relative to a cubic centimeter of pancreas, a cubic centimeter of exocrine cell cytoplasm, and to the volume of an average exocrine cell. The exocrine cells, accounting for 82% of the pancreas volume, consisted of 54% cytoplasmic matrix, 22% rough-surfaced endoplasmic reticulum (RER), 8.3% nuclei, 8.1% mitochondria, 6.4% zymogen granules, and 0.7% condensing vacuoles. Their total membrane surface area was distributed as follows: 60% RER, 21% mitochondria, 9.9% Golgi apparatus, 4.8% plasma membranes, 2.6% zymogen granules, 1.8% plasma membrane vesicles, and 0.4% condensing vacuoles. The application of this model to the study of membrane movements associated with the secretory process is discussed within the framework of an analytical approach.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsterdam A., Schramm M., Ohad I., Salomon Y., Selinger Z. Concomitant synthesis of membrane protein and exportable protein of the secretory granule in rat parotid gland. J Cell Biol. 1971 Jul;50(1):187–200. doi: 10.1083/jcb.50.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolender R. P., Weibel E. R. A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of threatment. J Cell Biol. 1973 Mar;56(3):746–761. doi: 10.1083/jcb.56.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W. Physiologically significant specializations of the cell surface. Circulation. 1962 Nov;26:1105–1132. doi: 10.1161/01.cir.26.5.1105. [DOI] [PubMed] [Google Scholar]
- Geuze J. J., Poort C. Cell membrane resorption in the rat exocrine pancreas cell after in vivo stimulation of the secretion, as studied by in vitro incubation with extracellular space markers. J Cell Biol. 1973 Apr;57(1):159–174. doi: 10.1083/jcb.57.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hokin L. E. Dynamic aspects of phospholipids during protein secretion. Int Rev Cytol. 1968;23:187–208. doi: 10.1016/s0074-7696(08)60272-7. [DOI] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldolesi J., Cova D. Composition of cellular membranes in the pancreas of the guinea pig. IV. Polyacrylamide gel electrophoresis and amino acid composition of membrane proteins. J Cell Biol. 1972 Oct;55(1):1–18. doi: 10.1083/jcb.55.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldolesi J., Jamieson J. D., Palade G. E. Composition of cellular membranes in the pancreas of the guinea pig. I. Isolation of membrane fractions. J Cell Biol. 1971 Apr;49(1):109–129. doi: 10.1083/jcb.49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldolesi J., Jamieson J. D., Palade G. E. Composition of cellular membranes in the pancreas of the guinea pig. II. Lipids. J Cell Biol. 1971 Apr;49(1):130–149. doi: 10.1083/jcb.49.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherle W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie. 1970 Jun;26(1):57–60. [PubMed] [Google Scholar]
- Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
- Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]