Abstract
A procedure has been developed for the cytochemical localization of 5'-nucleotidase in isolated, unfixed, rat liver microsomes. Membranes were incubated with adenosine 5'-phosphate (5'-AMP) and Pb(NO3)2 and then isolated on sucrose density gradients: all the phosphate released was recovered with the membranes by this procedure. Adenosine 2'-phosphate (2'-AMP) and adenosine 3', 5'-cyclic phosphate (3',5'-AMP) were shown to be competitive inhibitors, but not substrates, for purified 5'-nucleotidase and were employed to determine the specificity of the cytochemical reaction. It was found that the incubation conditions for the cytochemical assay did not affect the specificity of 5'-nucleotidase. Microsomes incubated as controls with Pb2+, or Pb2+ and 2'-AMP or 3',5'-AMP were of the same density, although slightly denser than microsomes incubated without Pb2+, and were unassociated with lead precipitate when examined by electron microscopy; microsomes incubated with Pb2+ and 5'-AMP were much denser and were stained heterogeneously with lead phosphate when examined by electron microscopy. Precipitates formed artificially from Pb2+ and inorganic phosphate did not resemble the reaction product. Microsomes were, therefore, separated on sucrose gradients and the subfractions were examined cytochemically. Lead precipitates were associated with the majority of rough-surfaced vesicles, and the reaction product was distributed heterogeneously in all fractions. Vesicles which stained like the membranes of the bile canaliculi in isolated plasma membranes were observed in the lightest subfraction. The reaction product was localized on the outside surface of the microsomal membranes, and was solubilized by low concentrations of ethylenediaminetetraacetic acid. It is concluded that 5'-nucleotidase is present in the endoplasmic reticulum and that the microsome fraction contains, in addition, vesicles derived from the plasma membrane.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ESSNER E., NOVIKOFF A. B., MASEK B. Adenosinetriphosphatase and 5-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J Biophys Biochem Cytol. 1958 Nov 25;4(6):711–716. doi: 10.1083/jcb.4.6.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farkas W. R. Depolymerization of ribonucleic acid by plumbous ion. Biochim Biophys Acta. 1968 Feb 26;155(2):401–409. doi: 10.1016/0005-2787(68)90184-6. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Rosenthal A. S., Moses H. L., Tice L. W. Lead and phosphate as sources of artifact in nucleoside phosphatase histochemistry. J Histochem Cytochem. 1969 Oct;17(10):641–650. doi: 10.1177/17.10.641. [DOI] [PubMed] [Google Scholar]
- Glaumann H., Dallner G. Subfractionation of smooth microsomes from rat liver. J Cell Biol. 1970 Oct;47(1):34–48. doi: 10.1083/jcb.47.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinton R. H., Dobrota M., Fitzsimons J. T., Reid E. Preparation of a plasma membrane fraction from rat liver by zonal centrifugation. Eur J Biochem. 1970 Feb;12(2):349–359. doi: 10.1111/j.1432-1033.1970.tb00857.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moses H. L., Rosenthal A. S., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity. J Histochem Cytochem. 1966 Oct;14(10):702–710. doi: 10.1177/14.10.702. [DOI] [PubMed] [Google Scholar]
- Moses H. L., Rosenthal A. S. Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J Histochem Cytochem. 1968 Aug;16(8):530–539. doi: 10.1177/16.8.530. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. S., Moses H. L., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. I. Nonenzymatic hydrolysis of nucleoside phosphates by lead ion. J Histochem Cytochem. 1966 Oct;14(10):698–701. doi: 10.1177/14.10.698. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. S., Moses H. L., Tice L., Ganote C. E. Lead ion and phosphatase histochemistry. 3. The effects of lead and adenosine triphosphate concentration on the incorporation of phosphate into fixed tissue. J Histochem Cytochem. 1969 Sep;17(9):608–612. doi: 10.1177/17.9.608. [DOI] [PubMed] [Google Scholar]
- Stein Y., Widnell C., Stein O. Acylation of lysophosphatides by plasma membrane fractions of rat liver. J Cell Biol. 1968 Oct;39(1):185–192. doi: 10.1083/jcb.39.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Symons R. H. Modified procedure for the synthesis of 32P-labelled ribonucleoside 5'-monophosphates of high specific activity. Biochim Biophys Acta. 1968 Feb 26;155(2):609–610. doi: 10.1016/0005-2787(68)90205-0. [DOI] [PubMed] [Google Scholar]
- Thines-Sempoux D., Amar-Costesec A., Beaufay H., Berthet J. The association of cholesterol, 5'-nucleotidase, and alkaline phosphodiesterase I with a distinct group of microsomal particles. J Cell Biol. 1969 Oct;43(1):189–192. doi: 10.1083/jcb.43.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
- Widnell C. C., Unkeless J. C. Partial purification of a lipoprotein with 5'-nucleotidase activity from membranes of rat liver cells. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1050–1057. doi: 10.1073/pnas.61.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Aaser A. A., Norris K. A., Reid E. Two techniques for the study of hepatic membrane-containing fractions. Biochem J. 1970 Jun;118(2):38P–39P. doi: 10.1042/bj1180038pb. [DOI] [PMC free article] [PubMed] [Google Scholar]