Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Feb 1;28(2):155–168. doi: 10.1083/jcb.28.2.155

MICROTUBULES IN THE MICROSPIKES AND CORTICAL CYTOPLASM OF ISOLATED CELLS

A C Taylor 1
PMCID: PMC2106920  PMID: 5914687

Abstract

In thin sections through microspikes extending from the surface of isolated cells, a core has been seen which may contain microtubular elements. The differences between these and microtubules seen elsewhere in the cytoplasm are attributed to their rapid growth and exposed location which make them especially vulnerable to injury by preparative treatment. In support of this view it is shown that cytoplasmic microtubules may be altered or even destroyed by exposing the cells to changes in osmotic pressure. Associated with these straight microtubules in the cytoplasm were also found solid microfilaments. The form of these components and their location and alignment in portions of cells which are under tension or in motion suggest that they function in the structural support of the cell and its microspikes and in the transmission of tension in the cytoplasm. A second type of microtubule, smaller in diameter and tortuous in form, was also seen in certain cells and is presumed, from its shape, to have little to do with cytoplasmic support.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEHNKE O. A PRELIMINARY REPORT ON "MICROTUBULES" IN UNDIFFERENTIATED AND DIFFERENTIATED VERTEBRATE CELLS. J Ultrastruct Res. 1964 Aug;11:139–146. doi: 10.1016/s0022-5320(64)80098-8. [DOI] [PubMed] [Google Scholar]
  2. GEY G. O. Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect. 1954;50:154–229. [PubMed] [Google Scholar]
  3. Ledbetter M. C., Porter K. R. Morphology of Microtubules of Plant Cell. Science. 1964 May 15;144(3620):872–874. doi: 10.1126/science.144.3620.872. [DOI] [PubMed] [Google Scholar]
  4. OVERTON J., SHOUP J. FINE STRUCTURE OF CELL SURFACE SPECIALIZATIONS IN THE MATURING DUODENAL MUCOSA OF THE CHICK. J Cell Biol. 1964 Apr;21:75–85. doi: 10.1083/jcb.21.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. RENAUD F. L., SWIFT H. THE DEVELOPMENT OF BASAL BODIES AND FLAGELLA IN ALLOMYCES ARBUSCULUS. J Cell Biol. 1964 Nov;23:339–354. doi: 10.1083/jcb.23.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ROBBINS E., GONATAS N. K. IN VITRO SELECTION OF THE MITOTIC CELL FOR SUBSEQUENT ELECTRON MICROSCOPY. J Cell Biol. 1964 Feb;20:356–359. doi: 10.1083/jcb.20.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SOTELO J. R., TRUJILLO-CENOZ O. Electron microscope study on the development of ciliary components of the neural epithelium of the chick embryo. Z Zellforsch Mikrosk Anat. 1958;49(1):1–12. doi: 10.1007/BF00335059. [DOI] [PubMed] [Google Scholar]
  10. TAYLOR A. C., ROBBINS E. Observations on microextensions from the surface of isolated vertebrate cells. Dev Biol. 1963 Mar;6:660–673. doi: 10.1016/0012-1606(63)90150-7. [DOI] [PubMed] [Google Scholar]
  11. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WOLFE S. L. ISOLATED MICROTUBULES. J Cell Biol. 1965 May;25:408–413. doi: 10.1083/jcb.25.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES