Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Nov;119(6):1217–1222. doi: 10.1111/j.1476-5381.1996.tb16025.x

Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung.

L Zhao 1, R al-Tubuly 1, A Sebkhi 1, A A Owji 1, D J Nunez 1, M R Wilkins 1
PMCID: PMC1915911  PMID: 8937726

Abstract

1. Angiotensin II (AII) binding density and the effect of chronic AII receptor blockade were examined in the rat model of hypoxia-induced pulmonary hypertension. 2. [125I]-[Sar1,Ile2]AII binding capacity was increased in lung membranes from rats exposed to hypoxia (10% fractional inspired O2) for 7 days compared to normal rats (Bmax 108 +/- 12 vs 77 +/- 3 fmol mg-1 protein; P < 0.05), with no significant change in dissociation constant. Competition with specific AII receptor subtype antagonists demonstrated that AT1 is the predominant subtype in both normal and hypoxic lung. 3. Rats treated intravenously with the AT1 antagonist, GR138950C, 1 mg kg-1 day-1 rather than saline alone during 7 days of exposure to hypoxia developed less pulmonary hypertension (pulmonary arterial pressure: 21.3 +/- 1.7 vs 28.3 +/- 1.1 mmHg; P < 0.05), right ventricular hypertrophy (right/left ventricle weight ratio: 0.35 +/- 0.01 vs 0.45 +/- 0.01; P < 0.05) and pulmonary artery remodelling (abundance of thick-walled pulmonary vessels: 9.6 +/- 1.4% vs 20.1 +/- 0.9%; P < 0.05). 4. The reduction in cardiac hypertrophy and pulmonary remodelling with the AT1 antagonist was greater than that achieved by a dose of sodium nitroprusside (SNP) that produced a comparable attenuation of the rise in pulmonary arterial pressure during hypoxia. 5. The data suggest that AII, via the AT1 receptor, has a role in the early pathogenesis of hypoxia-induced pulmonary hypertension in the rat.

Full text

PDF
1217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertolino F., Valentin J. P., Maffre M., Jover B., Bessac A. M., John G. W. Prevention of thromboxane A2 receptor-mediated pulmonary hypertension by a nonpeptide angiotensin II type 1 receptor antagonist. J Pharmacol Exp Ther. 1994 Feb;268(2):747–752. [PubMed] [Google Scholar]
  2. Bonvallet S. T., Zamora M. R., Hasunuma K., Sato K., Hanasato N., Anderson D., Sato K., Stelzner T. J. BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am J Physiol. 1994 Apr;266(4 Pt 2):H1327–H1331. doi: 10.1152/ajpheart.1994.266.4.H1327. [DOI] [PubMed] [Google Scholar]
  3. Brown L. A., Nunez D. J., Brookes C. I., Wilkins M. R. Selective increase in endothelin-1 and endothelin A receptor subtype in the hypertrophied myocardium of the aorto-venacaval fistula rat. Cardiovasc Res. 1995 Jun;29(6):768–774. [PubMed] [Google Scholar]
  4. Caldwell R. W., Blatteis C. M. Effect of chronic hypoxia on angiotensin-induced pulmonary vasoconstriction and converting enzyme activity in the rat. Proc Soc Exp Biol Med. 1983 Mar;172(3):346–350. doi: 10.3181/00379727-172-41568. [DOI] [PubMed] [Google Scholar]
  5. Chiu A. T., Roscoe W. A., McCall D. E., Timmermans P. B. Angiotensin II-1 receptors mediate both vasoconstrictor and hypertrophic responses in rat aortic smooth muscle cells. Receptor. 1991;1(3):133–140. [PubMed] [Google Scholar]
  6. Clozel J. P., Saunier C., Hartemann D., Fischli W. Effects of cilazapril, a novel angiotensin converting enzyme inhibitor, on the structure of pulmonary arteries of rats exposed to chronic hypoxia. J Cardiovasc Pharmacol. 1991 Jan;17(1):36–40. doi: 10.1097/00005344-199101000-00006. [DOI] [PubMed] [Google Scholar]
  7. Everett A. D., Tufro-McReddie A., Fisher A., Gomez R. A. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension. 1994 May;23(5):587–592. doi: 10.1161/01.hyp.23.5.587. [DOI] [PubMed] [Google Scholar]
  8. Hilditch A., Hunt A. A., Travers A., Polley J., Drew G. M., Middlemiss D., Judd D. B., Ross B. C., Robertson M. J. Pharmacological effects of GR138950, a novel angiotensin AT1 receptor antagonist. J Pharmacol Exp Ther. 1995 Feb;272(2):750–757. [PubMed] [Google Scholar]
  9. Ito H., Hirata Y., Adachi S., Tanaka M., Tsujino M., Koike A., Nogami A., Murumo F., Hiroe M. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest. 1993 Jul;92(1):398–403. doi: 10.1172/JCI116579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Janiak P., Pillon A., Prost J. F., Vilaine J. P. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension. 1992 Dec;20(6):737–745. doi: 10.1161/01.hyp.20.6.737. [DOI] [PubMed] [Google Scholar]
  11. Jederlinic P., Hill N. S., Ou L. C., Fanburg B. L. Lung angiotensin converting enzyme activity in rats with differing susceptibilities to chronic hypoxia. Thorax. 1988 Sep;43(9):703–707. doi: 10.1136/thx.43.9.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jin H., Oparil S., Ann H. S., Yang R., Jackson R. M. Hypoxia-induced inhibition of converting enzyme activity: role in vascular regulation. J Appl Physiol (1985) 1987 Sep;63(3):1012–1018. doi: 10.1152/jappl.1987.63.3.1012. [DOI] [PubMed] [Google Scholar]
  13. Kay J. M., Keane P. M., Suyama K. L., Gauthier D. Lung angiotensin converting enzyme activity in chronically hypoxic rats. Thorax. 1985 Aug;40(8):587–591. doi: 10.1136/thx.40.8.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keane P. M., Kay J. M., Suyama K. L., Gauthier D., Andrew K. Lung angiotensin converting enzyme activity in rats with pulmonary hypertension. Thorax. 1982 Mar;37(3):198–204. doi: 10.1136/thx.37.3.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kentera D., Susić D., Cvetković A., Djordjević G. Effects of SQ 14.225, an orally active inhibitor of angiotensin-converting enzyme, on hypoxic pulmonary hypertension and right ventricular hypertrophy in rats. Basic Res Cardiol. 1981 May-Jun;76(3):344–351. doi: 10.1007/BF01907777. [DOI] [PubMed] [Google Scholar]
  16. Kouyoumdjian C., Adnot S., Levame M., Eddahibi S., Bousbaa H., Raffestin B. Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats. J Clin Invest. 1994 Aug;94(2):578–584. doi: 10.1172/JCI117372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li H., Oparil S., Meng Q. C., Elton T. S., Chen Y. F. Selective downregulation of ANP-clearance-receptor gene expression in lung of rats adapted to hypoxia. Am J Physiol. 1995 Feb;268(2 Pt 1):L328–L335. doi: 10.1152/ajplung.1995.268.2.L328. [DOI] [PubMed] [Google Scholar]
  18. Liu E. C., Hedberg A., Goldenberg H. J., Harris D. N., Webb M. L. DuP 753, the selective angiotensin II receptor blocker, is a competitive antagonist to human platelet thromboxane A2/prostaglandin H2 (TP) receptors. Prostaglandins. 1992 Aug;44(2):89–99. doi: 10.1016/0090-6980(92)90070-a. [DOI] [PubMed] [Google Scholar]
  19. McKenzie J. C., Hung K. S., Mattioli L., Klein R. M. Reduction in hypertension-induced protein synthesis in the rat pulmonary trunk after treatment with teprotide (SQ 20881). Proc Soc Exp Biol Med. 1984 Nov;177(2):377–382. doi: 10.3181/00379727-177-41959. [DOI] [PubMed] [Google Scholar]
  20. Morrell N. W., Atochina E. N., Morris K. G., Danilov S. M., Stenmark K. R. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 1995 Oct;96(4):1823–1833. doi: 10.1172/JCI118228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morrell N. W., Morris K. G., Stenmark K. R. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol. 1995 Oct;269(4 Pt 2):H1186–H1194. doi: 10.1152/ajpheart.1995.269.4.H1186. [DOI] [PubMed] [Google Scholar]
  22. Rabinovitch M., Mullen M., Rosenberg H. C., Maruyama K., O'Brodovich H., Olley P. M. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat. Am J Physiol. 1988 Mar;254(3 Pt 2):H500–H508. doi: 10.1152/ajpheart.1988.254.3.H500. [DOI] [PubMed] [Google Scholar]
  23. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep;73(3):413–423. doi: 10.1161/01.res.73.3.413. [DOI] [PubMed] [Google Scholar]
  24. Thomas G. R., Thiemermann C., Walder C., Vane J. R. The effects of endothelium-dependent vasodilators on cardiac output and their distribution in the anaesthetized rat: a comparison with sodium nitroprusside. Br J Pharmacol. 1988 Nov;95(3):986–992. doi: 10.1111/j.1476-5381.1988.tb11729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Villarreal F. J., Kim N. N., Ungab G. D., Printz M. P., Dillmann W. H. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993 Dec;88(6):2849–2861. doi: 10.1161/01.cir.88.6.2849. [DOI] [PubMed] [Google Scholar]
  26. Viswanathan M., Tsutsumi K., Correa F. M., Saavedra J. M. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1361–1367. doi: 10.1016/0006-291x(91)91723-p. [DOI] [PubMed] [Google Scholar]
  27. Winter R. J., Zhao L., Krausz T., Hughes J. M. Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am Rev Respir Dis. 1991 Dec;144(6):1342–1346. doi: 10.1164/ajrccm/144.6.1342. [DOI] [PubMed] [Google Scholar]
  28. Zakheim R. M., Mattioli L., Molteni A., Mullis K. B., Bartley J. Prevention of pulmonary vascular changes of chronic alveolar hypoxia by inhibition of angiotensin I-converting enzyme in the rat. Lab Invest. 1975 Jul;33(1):57–61. [PubMed] [Google Scholar]
  29. Zakheim R. M., Molteni A., Mattioli L., Park M. Plasma angiotensin II levels in hypoxic and hypovolemic stress in unanesthetized rabbits. J Appl Physiol. 1976 Oct;41(4):462–465. doi: 10.1152/jappl.1976.41.4.462. [DOI] [PubMed] [Google Scholar]
  30. Zhao L., Brown L. A., Owji A. A., Nunez D. J., Smith D. M., Ghatei M. A., Bloom S. R., Wilkins M. R. Adrenomedullin activity in chronically hypoxic rat lungs. Am J Physiol. 1996 Aug;271(2 Pt 2):H622–H629. doi: 10.1152/ajpheart.1996.271.2.H622. [DOI] [PubMed] [Google Scholar]
  31. Zhao L., Winter R. J., Krausz T., Hughes J. M. Effects of continuous infusion of atrial natriuretic peptide on the pulmonary hypertension induced by chronic hypoxia in rats. Clin Sci (Lond) 1991 Sep;81(3):379–385. doi: 10.1042/cs0810379. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES