Abstract
The dynamics of human immunodeficiency virus type 1 (HIV-1) transcription was analyzed in vitro and in vivo by using a specific molecular approach which allows accurate quantitation of the different classes of viral mRNAs. Unspliced (US) and multiply spliced (MS) HIV-1 transcripts were assayed by competitive reverse transcription (cRT)-PCR, using a single competitor RNA bearing in tandem internally deleted sequences of both template species. Acute HIV-1 infection of primary peripheral blood mononuclear cells (PBMCs), monocytes/macrophages cells, and the A3.01 T-lymphocyte-derived cell line was studied; both classes of HIV-1 mRNAs increased exponentially (r2 > 0.98) at days 1 to 3 and 1 to 4 postinfection in HIV(IIIB)-infected A3.01 cells and PBMCs, respectively, whereas monocytes/macrophages infected with monocytotropic HIV(BaL) exhibited a linear (r2 = 0.81 to 0.94) accumulation of US and MS transcripts. Following induction of chronically infected ACH-2 cells, MS transcripts increased 2 h postinduction and peaked at 5 h (doubling time, 58 min), while at 24 h, US mRNAs increased 3,053-fold compared with basal time (doubling time, 137 min). To address the biopathological significance of HIV-1 expression pattern during infection progression, pilot cross-sectional and longitudinal analyses were carried out with samples from untreated and treated HIV-1-infected patients. In almost all untreated (recently infected, long-term nonprogressor, and progressor) patients, MS transcript levels followed the general trend of systemic HIV-1 activity. In patients under treatment with powerful antiretroviral compounds, viral MS transcripts rapidly fell to undetectable levels, indicating that in vivo, levels of MS mRNAs in PBMCs are closely associated with the number of newly infected cells and suggesting a new role for the quantitative analysis of HIV-1 transcription in infected patients.
Full Text
The Full Text of this article is available as a PDF (316.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arya S. K., Guo C., Josephs S. F., Wong-Staal F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science. 1985 Jul 5;229(4708):69–73. doi: 10.1126/science.2990040. [DOI] [PubMed] [Google Scholar]
- Bagnarelli P., Menzo S., Manzin A., Giacca M., Varaldo P. E., Clementi M. Detection of human immunodeficiency virus type 1 genomic RNA in plasma samples by reverse-transcription polymerase chain reaction. J Med Virol. 1991 Jun;34(2):89–95. doi: 10.1002/jmv.1890340204. [DOI] [PubMed] [Google Scholar]
- Bagnarelli P., Menzo S., Valenza A., Manzin A., Giacca M., Ancarani F., Scalise G., Varaldo P. E., Clementi M. Molecular profile of human immunodeficiency virus type 1 infection in symptomless patients and in patients with AIDS. J Virol. 1992 Dec;66(12):7328–7335. doi: 10.1128/jvi.66.12.7328-7335.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagnarelli P., Menzo S., Valenza A., Paolucci S., Petroni S., Scalise G., Sampaolesi R., Manzin A., Varaldo P. E., Clementi M. Quantitative molecular monitoring of human immunodeficiency virus type 1 activity during therapy with specific antiretroviral compounds. J Clin Microbiol. 1995 Jan;33(1):16–23. doi: 10.1128/jcm.33.1.16-23.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagnarelli P., Valenza A., Menzo S., Manzin A., Scalise G., Varaldo P. E., Clementi M. Dynamics of molecular parameters of human immunodeficiency virus type 1 activity in vivo. J Virol. 1994 Apr;68(4):2495–2502. doi: 10.1128/jvi.68.4.2495-2502.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumberger C., Kinloch-de-Loës S., Yerly S., Hirschel B., Perrin L. High levels of circulating RNA in patients with symptomatic HIV-1 infection. AIDS. 1993 Nov;7 (Suppl 2):S59–S64. doi: 10.1097/00002030-199311002-00013. [DOI] [PubMed] [Google Scholar]
- Bruggeman L. A., Thomson M. M., Nelson P. J., Kopp J. B., Rappaport J., Klotman P. E., Klotman M. E. Patterns of HIV-1 mRNA expression in transgenic mice are tissue-dependent. Virology. 1994 Aug 1;202(2):940–948. doi: 10.1006/viro.1994.1416. [DOI] [PubMed] [Google Scholar]
- Butera S. T., Roberts B. D., Lam L., Hodge T., Folks T. M. Human immunodeficiency virus type 1 RNA expression by four chronically infected cell lines indicates multiple mechanisms of latency. J Virol. 1994 Apr;68(4):2726–2730. doi: 10.1128/jvi.68.4.2726-2730.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang D. D., Sharp P. A. Messenger RNA transport and HIV rev regulation. Science. 1990 Aug 10;249(4969):614–615. doi: 10.1126/science.2143313. [DOI] [PubMed] [Google Scholar]
- Chen Z. W., Kou Z. C., Shen L., Regan J. D., Lord C. I., Halloran M., Lee-Parritz D., Fultz P. N., Letvin N. L. An acutely lethal simian immunodeficiency virus stimulates expansion of V beta 7- and V beta 14-expressing T lymphocytes. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7501–7505. doi: 10.1073/pnas.91.16.7501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clementi M., Bagnarelli P., Menzo S., Valenza A., Manzin A., Varaldo P. E. Clearance of HIV-1 viraemia after seroconversion. Lancet. 1993 Jan 30;341(8840):315–316. doi: 10.1016/0140-6736(93)92678-m. [DOI] [PubMed] [Google Scholar]
- Clementi M., Manzin A., Bagnarelli P., Menzo S., Varaldo P. E., Carloni G. Human immunodeficiency virus type 1 and hepatitis B virus transcription in peripheral blood lymphocytes from co-infected subjects. Arch Virol. 1992;126(1-4):1–9. doi: 10.1007/BF01309679. [DOI] [PubMed] [Google Scholar]
- Clementi M., Menzo S., Bagnarelli P., Valenza A., Paolucci S., Sampaolesi R., Manzin A., Varaldo P. E. Clinical use of quantitative molecular methods in studying human immunodeficiency virus type 1 infection. Clin Microbiol Rev. 1996 Apr;9(2):135–147. doi: 10.1128/cmr.9.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clements J. E., Wall R. J., Narayan O., Hauer D., Schoborg R., Sheffer D., Powell A., Carruth L. M., Zink M. C., Rexroad C. E. Development of transgenic sheep that express the visna virus envelope gene. Virology. 1994 May 1;200(2):370–380. doi: 10.1006/viro.1994.1201. [DOI] [PubMed] [Google Scholar]
- Clements J. E., Zink M. C. Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev. 1996 Jan;9(1):100–117. doi: 10.1128/cmr.9.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clouse K. A., Powell D., Washington I., Poli G., Strebel K., Farrar W., Barstad P., Kovacs J., Fauci A. S., Folks T. M. Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol. 1989 Jan 15;142(2):431–438. [PubMed] [Google Scholar]
- Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
- Cullen B. R., Greene W. C. Regulatory pathways governing HIV-1 replication. Cell. 1989 Aug 11;58(3):423–426. doi: 10.1016/0092-8674(89)90420-0. [DOI] [PubMed] [Google Scholar]
- Englund G., Theodore T. S., Freed E. O., Engelman A., Martin M. A. Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J Virol. 1995 May;69(5):3216–3219. doi: 10.1128/jvi.69.5.3216-3219.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ensoli B., Lusso P., Schachter F., Josephs S. F., Rappaport J., Negro F., Gallo R. C., Wong-Staal F. Human herpes virus-6 increases HIV-1 expression in co-infected T cells via nuclear factors binding to the HIV-1 enhancer. EMBO J. 1989 Oct;8(10):3019–3027. doi: 10.1002/j.1460-2075.1989.tb08452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ensoli F., Cafaro A., Fiorelli V., Vannelli B., Ensoli B., Thiele C. J. HIV-1 infection of primary human neuroblasts. Virology. 1995 Jun 20;210(1):221–225. doi: 10.1006/viro.1995.1336. [DOI] [PubMed] [Google Scholar]
- Feinberg M. B., Baltimore D., Frankel A. D. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4045–4049. doi: 10.1073/pnas.88.9.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg M. B., Jarrett R. F., Aldovini A., Gallo R. C., Wong-Staal F. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell. 1986 Sep 12;46(6):807–817. doi: 10.1016/0092-8674(86)90062-0. [DOI] [PubMed] [Google Scholar]
- Felber B. K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., Pavlakis G. N. rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1495–1499. doi: 10.1073/pnas.86.5.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer U., Meyer S., Teufel M., Heckel C., Lührmann R., Rautmann G. Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 1994 Sep 1;13(17):4105–4112. doi: 10.1002/j.1460-2075.1994.tb06728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folks T. M., Clouse K. A., Justement J., Rabson A., Duh E., Kehrl J. H., Fauci A. S. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2365–2368. doi: 10.1073/pnas.86.7.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folks T. M., Justement J., Kinter A., Schnittman S., Orenstein J., Poli G., Fauci A. S. Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J Immunol. 1988 Feb 15;140(4):1117–1122. [PubMed] [Google Scholar]
- Folks T., Benn S., Rabson A., Theodore T., Hoggan M. D., Martin M., Lightfoote M., Sell K. Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4539–4543. doi: 10.1073/pnas.82.13.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fultz P. N. SIVsmmPBj14: an atypical lentivirus. Curr Top Microbiol Immunol. 1994;188:65–76. doi: 10.1007/978-3-642-78536-8_4. [DOI] [PubMed] [Google Scholar]
- Fultz P. N., Zack P. M. Unique lentivirus--host interactions: SIVsmmPBj14 infection of macaques. Virus Res. 1994 May;32(2):205–225. doi: 10.1016/0168-1702(94)90042-6. [DOI] [PubMed] [Google Scholar]
- Furtado M. R., Kingsley L. A., Wolinsky S. M. Changes in the viral mRNA expression pattern correlate with a rapid rate of CD4+ T-cell number decline in human immunodeficiency virus type 1-infected individuals. J Virol. 1995 Apr;69(4):2092–2100. doi: 10.1128/jvi.69.4.2092-2100.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furtado M. R., Murphy R., Wolinsky S. M. Quantification of human immunodeficiency virus type 1 tat mRNA as a marker for assessing the efficacy of antiretroviral therapy. J Infect Dis. 1993 Jan;167(1):213–216. doi: 10.1093/infdis/167.1.213. [DOI] [PubMed] [Google Scholar]
- Gallo R. C. Human retroviruses in the second decade: a personal perspective. Nat Med. 1995 Aug;1(8):753–759. doi: 10.1038/nm0895-753. [DOI] [PubMed] [Google Scholar]
- Gaynor R. Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS. 1992 Apr;6(4):347–363. doi: 10.1097/00002030-199204000-00001. [DOI] [PubMed] [Google Scholar]
- Gilles P. N., Lathey J. L., Spector S. A. Replication of macrophage-tropic and T-cell-tropic strains of human immunodeficiency virus type 1 is augmented by macrophage-endothelial cell contact. J Virol. 1995 Apr;69(4):2133–2139. doi: 10.1128/jvi.69.4.2133-2139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonda M. A. Molecular biology and virus-host interactions of lentiviruses. Ann N Y Acad Sci. 1994 Jun 6;724:22–42. doi: 10.1111/j.1749-6632.1994.tb38893.x. [DOI] [PubMed] [Google Scholar]
- Greene W. C. Regulation of HIV-1 gene expression. Annu Rev Immunol. 1990;8:453–475. doi: 10.1146/annurev.iy.08.040190.002321. [DOI] [PubMed] [Google Scholar]
- Guatelli J. C., Gingeras T. R., Richman D. D. Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. J Virol. 1990 Sep;64(9):4093–4098. doi: 10.1128/jvi.64.9.4093-4098.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haase A. T. Pathogenesis of lentivirus infections. Nature. 1986 Jul 10;322(6075):130–136. doi: 10.1038/322130a0. [DOI] [PubMed] [Google Scholar]
- Haase A. T. The role of active and covert infections in lentivirus pathogenesis. Ann N Y Acad Sci. 1994 Jun 6;724:75–86. doi: 10.1111/j.1749-6632.1994.tb38897.x. [DOI] [PubMed] [Google Scholar]
- Haynes B. F., Pantaleo G., Fauci A. S. Toward an understanding of the correlates of protective immunity to HIV infection. Science. 1996 Jan 19;271(5247):324–328. doi: 10.1126/science.271.5247.324. [DOI] [PubMed] [Google Scholar]
- Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
- Holodniy M., Mole L., Margolis D., Moss J., Dong H., Boyer E., Urdea M., Kolberg J., Eastman S. Determination of human immunodeficiency virus RNA in plasma and cellular viral DNA genotypic zidovudine resistance and viral load during zidovudine-didanosine combination therapy. J Virol. 1995 Jun;69(6):3510–3516. doi: 10.1128/jvi.69.6.3510-3516.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jurriaans S., Weverling G. J., Goudsmit J., Boogaard J., Brok M., Van Strijp D., Lange J., Koot M., Van Gemen B. Distinct changes in HIV type 1 RNA versus p24 antigen levels in serum during short-term zidovudine therapy in asymptomatic individuals with and without progression to AIDS. AIDS Res Hum Retroviruses. 1995 Apr;11(4):473–479. doi: 10.1089/aid.1995.11.473. [DOI] [PubMed] [Google Scholar]
- Kim S. Y., Byrn R., Groopman J., Baltimore D. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol. 1989 Sep;63(9):3708–3713. doi: 10.1128/jvi.63.9.3708-3713.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klotman M. E., Kim S., Buchbinder A., DeRossi A., Baltimore D., Wong-Staal F. Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5011–5015. doi: 10.1073/pnas.88.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laspia M. F., Rice A. P., Mathews M. B. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell. 1989 Oct 20;59(2):283–292. doi: 10.1016/0092-8674(89)90290-0. [DOI] [PubMed] [Google Scholar]
- Layne S. P., Merges M. J., Dembo M., Spouge J. L., Conley S. R., Moore J. P., Raina J. L., Renz H., Gelderblom H. R., Nara P. L. Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology. 1992 Aug;189(2):695–714. doi: 10.1016/0042-6822(92)90593-e. [DOI] [PubMed] [Google Scholar]
- Malim M. H., Hauber J., Le S. Y., Maizel J. V., Cullen B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989 Mar 16;338(6212):254–257. doi: 10.1038/338254a0. [DOI] [PubMed] [Google Scholar]
- Mellors J. W., Rinaldo C. R., Jr, Gupta P., White R. M., Todd J. A., Kingsley L. A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996 May 24;272(5265):1167–1170. doi: 10.1126/science.272.5265.1167. [DOI] [PubMed] [Google Scholar]
- Menzo S., Bagnarelli P., Giacca M., Manzin A., Varaldo P. E., Clementi M. Absolute quantitation of viremia in human immunodeficiency virus infection by competitive reverse transcription and polymerase chain reaction. J Clin Microbiol. 1992 Jul;30(7):1752–1757. doi: 10.1128/jcm.30.7.1752-1757.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael N. L., Mo T., Merzouki A., O'Shaughnessy M., Oster C., Burke D. S., Redfield R. R., Birx D. L., Cassol S. A. Human immunodeficiency virus type 1 cellular RNA load and splicing patterns predict disease progression in a longitudinally studied cohort. J Virol. 1995 Mar;69(3):1868–1877. doi: 10.1128/jvi.69.3.1868-1877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael N. L., Morrow P., Mosca J., Vahey M., Burke D. S., Redfield R. R. Induction of human immunodeficiency virus type 1 expression in chronically infected cells is associated primarily with a shift in RNA splicing patterns. J Virol. 1991 Mar;65(3):1291–1303. doi: 10.1128/jvi.65.3.1291-1303.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael N. L., Vahey M., Burke D. S., Redfield R. R. Viral DNA and mRNA expression correlate with the stage of human immunodeficiency virus (HIV) type 1 infection in humans: evidence for viral replication in all stages of HIV disease. J Virol. 1992 Jan;66(1):310–316. doi: 10.1128/jvi.66.1.310-316.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nabel G., Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature. 1987 Apr 16;326(6114):711–713. doi: 10.1038/326711a0. [DOI] [PubMed] [Google Scholar]
- Neumann M., Harrison J., Saltarelli M., Hadziyannis E., Erfle V., Felber B. K., Pavlakis G. N. Splicing variability in HIV type 1 revealed by quantitative RNA polymerase chain reaction. AIDS Res Hum Retroviruses. 1994 Nov;10(11):1531–1542. doi: 10.1089/aid.1994.10.1531. [DOI] [PubMed] [Google Scholar]
- O'Reilly M. M., McNally M. T., Beemon K. L. Two strong 5' splice sites and competing, suboptimal 3' splice sites involved in alternative splicing of human immunodeficiency virus type 1 RNA. Virology. 1995 Nov 10;213(2):373–385. doi: 10.1006/viro.1995.0010. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Fauci A. S. Tracking HIV during disease progression. Curr Opin Immunol. 1994 Aug;6(4):600–604. doi: 10.1016/0952-7915(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Graziosi C., Fauci A. S. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993 Feb 4;328(5):327–335. doi: 10.1056/NEJM199302043280508. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Graziosi C., Fauci A. S. The role of lymphoid organs in the pathogenesis of HIV infection. Semin Immunol. 1993 Jun;5(3):157–163. doi: 10.1006/smim.1993.1019. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Menzo S., Vaccarezza M., Graziosi C., Cohen O. J., Demarest J. F., Montefiori D., Orenstein J. M., Fox C., Schrager L. K. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med. 1995 Jan 26;332(4):209–216. doi: 10.1056/NEJM199501263320402. [DOI] [PubMed] [Google Scholar]
- Peng H., Reinhart T. A., Retzel E. F., Staskus K. A., Zupancic M., Haase A. T. Single cell transcript analysis of human immunodeficiency virus gene expression in the transition from latent to productive infection. Virology. 1995 Jan 10;206(1):16–27. doi: 10.1016/s0042-6822(95)80015-8. [DOI] [PubMed] [Google Scholar]
- Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
- Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
- Pomerantz R. J., Trono D., Feinberg M. B., Baltimore D. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell. 1990 Jun 29;61(7):1271–1276. doi: 10.1016/0092-8674(90)90691-7. [DOI] [PubMed] [Google Scholar]
- Purcell D. F., Martin M. A. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993 Nov;67(11):6365–6378. doi: 10.1128/jvi.67.11.6365-6378.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saksela K., Stevens C., Rubinstein P., Baltimore D. Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4+ lymphocytes. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1104–1108. doi: 10.1073/pnas.91.3.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scadden D. T., Wang Z., Groopman J. E. Quantitation of plasma human immunodeficiency virus type 1 RNA by competitive polymerase chain reaction. J Infect Dis. 1992 Jun;165(6):1119–1123. doi: 10.1093/infdis/165.6.1119. [DOI] [PubMed] [Google Scholar]
- Schnittman S. M., Greenhouse J. J., Lane H. C., Pierce P. F., Fauci A. S. Frequent detection of HIV-1-specific mRNAs in infected individuals suggests ongoing active viral expression in all stages of disease. AIDS Res Hum Retroviruses. 1991 Apr;7(4):361–367. doi: 10.1089/aid.1991.7.361. [DOI] [PubMed] [Google Scholar]
- Schwartz S., Felber B. K., Benko D. M., Fenyö E. M., Pavlakis G. N. Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol. 1990 Jun;64(6):2519–2529. doi: 10.1128/jvi.64.6.2519-2529.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwiebert R., Fultz P. N. Immune activation and viral burden in acute disease induced by simian immunodeficiency virus SIVsmmPBj14: correlation between in vitro and in vivo events. J Virol. 1994 Sep;68(9):5538–5547. doi: 10.1128/jvi.68.9.5538-5547.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seshamma T., Bagasra O., Trono D., Baltimore D., Pomerantz R. J. Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10663–10667. doi: 10.1073/pnas.89.22.10663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheppard H. W., Lang W., Ascher M. S., Vittinghoff E., Winkelstein W. The characterization of non-progressors: long-term HIV-1 infection with stable CD4+ T-cell levels. AIDS. 1993 Sep;7(9):1159–1166. [PubMed] [Google Scholar]
- Toohey K. L., Haase A. T. The rev gene of visna virus is required for productive infection. Virology. 1994 Apr;200(1):276–280. doi: 10.1006/viro.1994.1186. [DOI] [PubMed] [Google Scholar]
- Tornatore C., Meyers K., Atwood W., Conant K., Major E. Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol. 1994 Jan;68(1):93–102. doi: 10.1128/jvi.68.1.93-102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
- Weiss R. A. How does HIV cause AIDS? Science. 1993 May 28;260(5112):1273–1279. doi: 10.1126/science.8493571. [DOI] [PubMed] [Google Scholar]
- Williams L. M., Cloyd M. W. Polymorphic human gene(s) determines differential susceptibility of CD4 lymphocytes to infection by certain HIV-1 isolates. Virology. 1991 Oct;184(2):723–728. doi: 10.1016/0042-6822(91)90442-e. [DOI] [PubMed] [Google Scholar]
- Zazopoulos E., Haseltine W. A. Effect of nef alleles on replication of human immunodeficiency virus type 1. Virology. 1993 May;194(1):20–27. doi: 10.1006/viro.1993.1230. [DOI] [PubMed] [Google Scholar]