Abstract
A region of the infectious bronchitis virus (IBV) genome between nucleotide positions 8693 and 10927 which encodes the predicted 3C-like proteinase (3CLP) domain and several potential cleavage sites has been clones into a T7 transcription vector. In vitro translation of synthetic transcripts generated from this plasmid was not accompanied by detectable processing activity of the nascent polypeptide unless the translation was carried out in the presence of microsomal membrane preparations. The processed products so obtained closely resembled in size those expected from cleavage at predicted glutamine-serine (Q/S) dipeptides and included a protein with a size of 35 kDa (p35) that corresponds to the predicted size of 3CLP. Efficient processing was dependent on the presence of membranes during translation; processing was found to occur when microsomes were added posttranslationally, but only after extended periods of incubation. C-terminal deletion analysis of the encoded polyprotein fragment revealed that cleavage activity was dependent on the presence of most but not all of the downstream and adjacent hydrophobic region MP2. Dysfunctional mutagenesis of the putative active-site cysteine residue of 3CLP to either serine or alanine resulted in polypeptides that were impaired for processing, while mutagenesis at the predicted Q/S release sites implicated them in the release of the p35 protein. Processed products of the wild-type protein were active in trans cleavage assays, which were used to demonstrate that the IBV 3CLP is sensitive to inhibition by both serine and cysteine protease class-specific inhibitors. These data reveal the identity of the IBV 3C-like proteinase, which exhibits characteristics in common with the 3C proteinases of picornaviruses.
Full Text
The Full Text of this article is available as a PDF (358.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allaire M., Chernaia M. M., Malcolm B. A., James M. N. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature. 1994 May 5;369(6475):72–76. doi: 10.1038/369072a0. [DOI] [PubMed] [Google Scholar]
- Baker S. C., Shieh C. K., Soe L. H., Chang M. F., Vannier D. M., Lai M. M. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J Virol. 1989 Sep;63(9):3693–3699. doi: 10.1128/jvi.63.9.3693-3699.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker S. C., Yokomori K., Dong S., Carlisle R., Gorbalenya A. E., Koonin E. V., Lai M. M. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol. 1993 Oct;67(10):6056–6063. doi: 10.1128/jvi.67.10.6056-6063.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baum E. Z., Bebernitz G. A., Palant O., Mueller T., Plotch S. J. Purification, properties, and mutagenesis of poliovirus 3C protease. Virology. 1991 Nov;185(1):140–150. doi: 10.1016/0042-6822(91)90762-z. [DOI] [PubMed] [Google Scholar]
- Bazan J. F., Fletterick R. J. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7872–7876. doi: 10.1073/pnas.85.21.7872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boursnell M. E., Brown T. D., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol. 1987 Jan;68(Pt 1):57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
- Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987 Dec 1;6(12):3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Rolley N. J., Brown T. D., Inglis S. C. Products of the polymerase-encoding region of the coronavirus IBV. Adv Exp Med Biol. 1990;276:275–281. doi: 10.1007/978-1-4684-5823-7_38. [DOI] [PubMed] [Google Scholar]
- Brierley I., Digard P., Inglis S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denison M. R., Zoltick P. W., Hughes S. A., Giangreco B., Olson A. L., Perlman S., Leibowitz J. L., Weiss S. R. Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology. 1992 Jul;189(1):274–284. doi: 10.1016/0042-6822(92)90703-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denison M., Perlman S. Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology. 1987 Apr;157(2):565–568. doi: 10.1016/0042-6822(87)90303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 1989 Jan 30;243(2):103–114. doi: 10.1016/0014-5793(89)80109-7. [DOI] [PubMed] [Google Scholar]
- Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989 Jun 26;17(12):4847–4861. doi: 10.1093/nar/17.12.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology. 1993 Aug;195(2):680–691. doi: 10.1006/viro.1993.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S. A., Bonilla P. J., Weiss S. R. Identification of the murine coronavirus p28 cleavage site. J Virol. 1995 Feb;69(2):809–813. doi: 10.1128/jvi.69.2.809-813.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadam S., Poddig J., Humphrey P., Karwowski J., Jackson M., Tennent S., Fung L., Hochlowski J., Rasmussen R., McAlpine J. Citrinin hydrate and radicinin: human rhinovirus 3C-protease inhibitors discovered in a target-directed microbial screen. J Antibiot (Tokyo) 1994 Jul;47(7):836–839. doi: 10.7164/antibiotics.47.836. [DOI] [PubMed] [Google Scholar]
- Kean K. M., Howell M. T., Grünert S., Girard M., Jackson R. J. Substitution mutations at the putative catalytic triad of the poliovirus 3C protease have differential effects on cleavage at different sites. Virology. 1993 May;194(1):360–364. doi: 10.1006/viro.1993.1268. [DOI] [PubMed] [Google Scholar]
- Kim J. C., Spence R. A., Currier P. F., Lu X., Denison M. R. Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology. 1995 Apr 1;208(1):1–8. doi: 10.1006/viro.1995.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M. M. Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
- Lee H. J., Shieh C. K., Gorbalenya A. E., Koonin E. V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M. M. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991 Feb;180(2):567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D. X., Brierley I., Tibbles K. W., Brown T. D. A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. J Virol. 1994 Sep;68(9):5772–5780. doi: 10.1128/jvi.68.9.5772-5780.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D. X., Tibbles K. W., Cavanagh D., Brown T. D., Brierley I. Identification, expression, and processing of an 87-kDa polypeptide encoded by ORF 1a of the coronavirus infectious bronchitis virus. Virology. 1995 Apr 1;208(1):48–57. doi: 10.1006/viro.1995.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu Y., Lu X., Denison M. R. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol. 1995 Jun;69(6):3554–3559. doi: 10.1128/jvi.69.6.3554-3559.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell. 1994 Jun 3;77(5):761–771. doi: 10.1016/0092-8674(94)90059-0. [DOI] [PubMed] [Google Scholar]
- McCall J. O., Kadam S., Katz L. A high capacity microbial screen for inhibitors of human rhinovirus protease 3C. Biotechnology (N Y) 1994 Oct;12(10):1012–1016. doi: 10.1038/nbt1094-1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russel M., Kidd S., Kelley M. R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986;45(3):333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
- Soe L. H., Shieh C. K., Baker S. C., Chang M. F., Lai M. M. Sequence and translation of the murine coronavirus 5'-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. J Virol. 1987 Dec;61(12):3968–3976. doi: 10.1128/jvi.61.12.3968-3976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M. C. Coronaviruses: structure and genome expression. J Gen Virol. 1988 Dec;69(Pt 12):2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Tibbles K. W., Brierley I., Cavanagh D., Brown T. D. A region of the coronavirus infectious bronchitis virus 1a polyprotein encoding the 3C-like protease domain is subject to rapid turnover when expressed in rabbit reticulocyte lysate. J Gen Virol. 1995 Dec;76(Pt 12):3059–3070. doi: 10.1099/0022-1317-76-12-3059. [DOI] [PubMed] [Google Scholar]
- Ziebuhr J., Herold J., Siddell S. G. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol. 1995 Jul;69(7):4331–4338. doi: 10.1128/jvi.69.7.4331-4338.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]