Abstract
Zeins, the seed storage proteins of maize, are a group of alcohol-soluble polypeptides of different molecular masses that share a similar amino acid composition but vary in their sulfur amino acid composition. They are synthesized on the rough endoplasmic reticulum (ER) in the endosperm and are stored in ER-derived protein bodies. Our goal is to balance the amino acid composition of the methionine-deficient forage legumes by expressing the sulfur amino acid-rich 15-kD zeins in their leaves. However, it is crucial to know whether this protein would be stable in nonseed tissues of transgenic plants. The major focus of this paper is to compare the accumulation pattern of the 15-kD zein protein with a vacuolar targeted seed protein, [beta]-phaseolin, in nonseed tissues and to determine the basis for its stability/instability. We have introduced the 15-kD zein and bean [beta]-phaseolin-coding sequences behind the 35S cauliflower mosaic virus promoter into tobacco (Nicotiana tabacum) and analyzed the protein's accumulation pattern in different tissues. Our results demonstrate that the 15-kD seed protein is stable not only in seeds but in all nonseed tissues tested, whereas the [beta]-phaseolin protein accumulated only in mid- and postmaturation seeds. Interestingly, zein accumulates in novel protein bodies both in the seeds and in nonseed tissues. We attribute the instability of the [beta]-phaseolin protein in nonseed tissues to the fact that it is targeted to protease-rich vacuoles. The stability of the 15-kD zein could be attributed to its retention in the ER or to the protease-resistant nature of the protein.
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
- Bagga S., Sutton D., Kemp J. D., Sengupta-Gopalan C. Constitutive expression of the beta-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue. Plant Mol Biol. 1992 Sep;19(6):951–958. doi: 10.1007/BF00040527. [DOI] [PubMed] [Google Scholar]
- Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards G. A., Hepher A., Clerk S. P., Boulter D. Pea lectin is correctly processed, stable and active in leaves of transgenic potato plants. Plant Mol Biol. 1991 Jul;17(1):89–100. doi: 10.1007/BF00036809. [DOI] [PubMed] [Google Scholar]
- Fontes E. B., Shank B. B., Wrobel R. L., Moose S. P., OBrian G. R., Wurtzel E. T., Boston R. S. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell. 1991 May;3(5):483–496. doi: 10.1105/tpc.3.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 1987 Nov 11;15(21):8693–8711. doi: 10.1093/nar/15.21.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman L. M., Donaldson D. D., Bookland R., Rashka K., Herman E. M. Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J. 1987 Nov;6(11):3213–3221. doi: 10.1002/j.1460-2075.1987.tb02638.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Larkins B. A., Hurkman W. J. Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol. 1978 Aug;62(2):256–263. doi: 10.1104/pp.62.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lending C. R., Larkins B. A. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell. 1989 Oct;1(10):1011–1023. doi: 10.1105/tpc.1.10.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X., Wu Y., Zhang D. Z., Gillikin J. W., Boston R. S., Franceschi V. R., Okita T. W. Rice prolamine protein body biogenesis: a BiP-mediated process. Science. 1993 Nov 12;262(5136):1054–1056. doi: 10.1126/science.8235623. [DOI] [PubMed] [Google Scholar]
- Ohtani T., Galili G., Wallace J. C., Thompson G. A., Larkins B. A. Normal and lysine-containing zeins are unstable in transgenic tobacco seeds. Plant Mol Biol. 1991 Jan;16(1):117–128. doi: 10.1007/BF00017922. [DOI] [PubMed] [Google Scholar]
- Pedersen K., Argos P., Naravana S. V., Larkins B. A. Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of Mr 15,000. J Biol Chem. 1986 May 15;261(14):6279–6284. [PubMed] [Google Scholar]
- Pelham H. R. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci. 1990 Dec;15(12):483–486. doi: 10.1016/0968-0004(90)90303-s. [DOI] [PubMed] [Google Scholar]
- Schernthaner J. P., Matzke M. A., Matzke A. J. Endosperm-specific activity of a zein gene promoter in transgenic tobacco plants. EMBO J. 1988 May;7(5):1249–1255. doi: 10.1002/j.1460-2075.1988.tb02938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wandelt C. I., Khan M. R., Craig S., Schroeder H. E., Spencer D., Higgins T. J. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 1992 Mar;2(2):181–192. doi: 10.1046/j.1365-313x.1992.t01-41-00999.x. [DOI] [PubMed] [Google Scholar]
- Wilkins T. A., Bednarek S. Y., Raikhel N. V. Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell. 1990 Apr;2(4):301–313. doi: 10.1105/tpc.2.4.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Valk H. C., van Loon L. C. Subcellular Localization of Proteases in Developing Leaves of Oats (Avena sativa L.). Plant Physiol. 1988 Jun;87(2):536–541. doi: 10.1104/pp.87.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]