Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jan;113(1):175–179. doi: 10.1104/pp.113.1.175

Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity.

J Rösler 1, F Krekel 1, N Amrhein 1, J Schmid 1
PMCID: PMC158128  PMID: 9008393

Abstract

A full-length cDNA encoding phenylalanine ammonia-lyase (PAL) from Zea mays L. was isolated and the coding region was expressed in Escherichia coli as a C-terminal fusion to glutathione S-transferase. After purification by glutathione-Sepharose chromatography, the glutathione S-transferase moiety was cleaved off and the resulting PAL enzyme analyzed. In contrast to PAL from dicots, this maize PAL isozyme catalyzed the deamination of both L-phenylalanine (PAL activity) and L-tyrosine (tyrosine ammonia-lyase activity). These results provide unequivocal proof that PAL and tyrosine ammonia-lyase activities reside in the same polypeptide. In spite of large differences in the Michaelis constant and turnover number of the two activities, their catalytic efficiencies are very similar. Also, both activities have the same pH and temperature optima. These results imply that maize can produce p-coumaric acid from both phenylalanine and tyrosine.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appert C., Logemann E., Hahlbrock K., Schmid J., Amrhein N. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). Eur J Biochem. 1994 Oct 1;225(1):491–499. doi: 10.1111/j.1432-1033.1994.00491.x. [DOI] [PubMed] [Google Scholar]
  2. Bolwell G. P., Bell J. N., Cramer C. L., Schuch W., Lamb C. J., Dixon R. A. L-Phenylalanine ammonia-lyase from Phaseolus vulgaris. Characterisation and differential induction of multiple forms from elicitor-treated cell suspension cultures. Eur J Biochem. 1985 Jun 3;149(2):411–419. doi: 10.1111/j.1432-1033.1985.tb08941.x. [DOI] [PubMed] [Google Scholar]
  3. Campbell M. M., Sederoff R. R. Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol. 1996 Jan;110(1):3–13. doi: 10.1104/pp.110.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eberhard J., Bischoff M., Raesecke H. R., Amrhein N., Schmid J. Isolation of a cDNA from tomato coding for an unregulated, cytosolic chorismate mutase. Plant Mol Biol. 1996 Jul;31(4):917–922. doi: 10.1007/BF00019479. [DOI] [PubMed] [Google Scholar]
  6. Görlach J., Schmid J. Introducing StuI sites improves vectors for the expression of fusion proteins with factor Xa cleavage sites. Gene. 1996 Apr 17;170(1):145–146. doi: 10.1016/0378-1119(95)00825-x. [DOI] [PubMed] [Google Scholar]
  7. Havir E. A. l-Phenylalanine Ammonia-Lyase (Maize): Evidence for a Common Catalytic Site for l-Phenylalanine and l-Tyrosine. Plant Physiol. 1971 Aug;48(2):130–136. doi: 10.1104/pp.48.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holländer H., Kiltz H. H., Amrhein N. Interference of L-alpha-aminooxy-beta-phenylpropionic acid with phenylalanine metabolism in buckwheat. Z Naturforsch C. 1979 Dec;34(12):1162–1173. doi: 10.1515/znc-1979-1214. [DOI] [PubMed] [Google Scholar]
  9. KOUKOL J., CONN E. E. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem. 1961 Oct;236:2692–2698. [PubMed] [Google Scholar]
  10. Lee S. W., Robb J., Nazar R. N. Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum). J Biol Chem. 1992 Jun 15;267(17):11824–11830. [PubMed] [Google Scholar]
  11. McKegney G. R., Butland S. L., Theilmann D., Ellis B. E. Expression of poplar phenylalanine ammonia-lyase in insect cell cultures. Phytochemistry. 1996 Mar;41(5):1259–1263. doi: 10.1016/0031-9422(95)00677-x. [DOI] [PubMed] [Google Scholar]
  12. Schulz W., Eiben H. G., Hahlbrock K. Expression in Escherichia coli of catalytically active phenylalanine ammonia-lyase from parsley. FEBS Lett. 1989 Dec 4;258(2):335–338. doi: 10.1016/0014-5793(89)81687-4. [DOI] [PubMed] [Google Scholar]
  13. Wanner L. A., Li G., Ware D., Somssich I. E., Davis K. R. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol. 1995 Jan;27(2):327–338. doi: 10.1007/BF00020187. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES