Abstract
The relationships between the haemolytic activities of complement and its components were studied. The activities studied included CH50 (classical pathway), AP50 (alternative pathway), CV50 (early part of alternative pathway) and C(3--9)H50 ((the late part of both pathways). The components included C3, C4, C5, C9, B and D. There was a good correlation between CH50 and AP50. AP50 had a good correlation with B and CV50. There was no correlation between AP50 and C(3--9)H50, and none between C(3--9)H50 and C5 or C9. AP50 may primarily represent changes in the early part of the alternative pathway. C(3--9)H50 is not influenced by respective changes in the amounts of C5 or C9. Since cell lesion is now considered to be caused by a unit of C5b to C9, a change in each component of C5 to C9 may not influence haemolytic activity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballow M., Cochrane C. G. Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them. J Immunol. 1969 Nov;103(5):944–952. [PubMed] [Google Scholar]
- Brai M., Osler A. G. Studies of the C3 shunt activation in cobra venom induced lysis of unsensitized erythrocytes. Proc Soc Exp Biol Med. 1972 Jul;140(3):1116–1121. doi: 10.3181/00379727-140-36623. [DOI] [PubMed] [Google Scholar]
- Martin A., Lachmann P. J., Halbwachs L., Hobart M. J. Haemolytic diffusion plate assays for factors B and D of the alternative pathway of complement activation. Immunochemistry. 1976 Apr;13(4):317–324. doi: 10.1016/0019-2791(76)90341-4. [DOI] [PubMed] [Google Scholar]
- Mayer M. M. Presidential address to the American Association of Immunologists, delivered in Chicago, Illinois, April 6, 1977. Mechanism of cytolysis by lymphocytes: A comparison with complement. J Immunol. 1977 Oct;119(4):1195–1203. [PubMed] [Google Scholar]
- Müller-Eberhard H. J., Fjellström K. E. Isolation of the anticomplementary protein from cobra venom and its mode of action on C3. J Immunol. 1971 Dec;107(6):1666–1672. [PubMed] [Google Scholar]
- Nelson R. A., Jr, Jensen J., Gigli I., Tamura N. Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry. 1966 Mar;3(2):111–135. doi: 10.1016/0019-2791(66)90292-8. [DOI] [PubMed] [Google Scholar]
- PILLEMER L., BLUM L., LEPOW I. H., ROSS O. A., TODD E. W., WARDLAW A. C. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954 Aug 20;120(3112):279–285. doi: 10.1126/science.120.3112.279. [DOI] [PubMed] [Google Scholar]
- Platts-Mills T. A., Ishizaka K. Activation of the alternate pathway of human complements by rabbit cells. J Immunol. 1974 Jul;113(1):348–358. [PubMed] [Google Scholar]
- Polley M. J., Müller-Eberhard H. J. Enharncement of the hemolytic activity of the second component of human complement by oxidation. J Exp Med. 1967 Dec 1;126(6):1013–1025. doi: 10.1084/jem.126.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takada A., Takada Y. Effect of tranexamic acid, t-AMCHA, and its cis-isomer on the complement system in vitro and in vivo: possible relationship between coagulation and complement systems. Thromb Res. 1978 Aug;13(2):193–205. doi: 10.1016/0049-3848(78)90008-7. [DOI] [PubMed] [Google Scholar]
- Takada Y., Arimoto Y., Mineda H., Takada A. Inhibition of the classical and alternative pathways by amino acids and their derivatives. Immunology. 1978 Mar;34(3):509–515. [PMC free article] [PubMed] [Google Scholar]
- Vroon D. H., Schultz D. R., Zarco R. M. The separation of nine components and two inactivators of components of complement in humansserum. Immunochemistry. 1970 Jan;7(1):43–61. doi: 10.1016/0019-2791(70)90029-7. [DOI] [PubMed] [Google Scholar]