Abstract
Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC(1) [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. Dormancy was determined by germination of seeds after 1, 11, and 21 days of after-ripening (DAR). Six dormancy QTL, designated as qSD(S)-4, -6, -7-1, -7-2, -8, and -12, were identified. The locus qSD(S)-7-1 was tightly linked to the red pericarp color gene Rc. A QTL x DAR interaction was detected for qSD(S)-12, the locus with the largest main effect at 1, 11, and 21 DAR (R(2) = 0.14, 0.24, and 0.20, respectively). Two, three, and four orders of epistases were detected with four, six, and six QTL, respectively. The higher-order epistases strongly suggest the presence of genetically complex networks in the regulation of variation for seed dormancy in natural populations and make it critical to select for a favorable combination of alleles at multiple loci in positional cloning of a target dormancy gene.
Full Text
The Full Text of this article is available as a PDF (331.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso-Blanco Carlos, Bentsink Leónie, Hanhart Corrie J., Blankestijn-de Vries Hetty, Koornneef Maarten. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics. 2003 Jun;164(2):711–729. doi: 10.1093/genetics/164.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debeaujon I., Léon-Kloosterziel K. M., Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000 Feb;122(2):403–414. doi: 10.1104/pp.122.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devos K. M., Gale M. D. Comparative genetics in the grasses. Plant Mol Biol. 1997 Sep;35(1-2):3–15. [PubMed] [Google Scholar]
- Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B., Tanksley S. D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000 Jul 7;289(5476):85–88. doi: 10.1126/science.289.5476.85. [DOI] [PubMed] [Google Scholar]
- Groos C., Gay G., Perretant M-R, Gervais L., Bernard M., Dedryver F., Charmet G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor Appl Genet. 2002 Jan;104(1):39–47. doi: 10.1007/s001220200004. [DOI] [PubMed] [Google Scholar]
- Koornneef Maarten, Bentsink Leónie, Hilhorst Henk. Seed dormancy and germination. Curr Opin Plant Biol. 2002 Feb;5(1):33–36. doi: 10.1016/s1369-5266(01)00219-9. [DOI] [PubMed] [Google Scholar]
- Li Z., Pinson S. R., Park W. D., Paterson A. H., Stansel J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics. 1997 Feb;145(2):453–465. doi: 10.1093/genetics/145.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001 Aug;11(8):1441–1452. doi: 10.1101/gr.184001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Der Schaar W., Alonso-Blanco C., Léon-Kloosterziel K. M., Jansen R. C., van Ooijen J. W., Koornneef M. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity (Edinb) 1997 Aug;79(Pt 2):190–200. doi: 10.1038/hdy.1997.142. [DOI] [PubMed] [Google Scholar]