Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):2039–2053. doi: 10.1093/genetics/165.4.2039

Genetics of P-element transposition into Drosophila melanogaster centric heterochromatin.

Alexander Y Konev 1, Christopher M Yan 1, David Acevedo 1, Cameron Kennedy 1, Elaina Ward 1, Arlene Lim 1, Sanjay Tickoo 1, Gary H Karpen 1
PMCID: PMC1462875  PMID: 14704184

Abstract

Heterochromatin is a major component of higher eukaryotic genomes, but progress in understanding the molecular structure and composition of heterochromatin has lagged behind the production of relatively complete euchromatic genome sequences. The introduction of single-copy molecular-genetic entry points can greatly facilitate structure and sequence analysis of heterochromatic regions that are rich in repeated DNA. In this study, we report the isolation of 502 new P-element insertions into Drosophila melanogaster centric heterochromatin, generated in nine different genetic screens that relied on mosaic silencing (position-effect variegation, or PEV) of the yellow gene present in the transposon. The highest frequencies of recovery of variegating insertions were observed when centric insertions were used as the source for mobilization. We propose that the increased recovery of variegating insertions from heterochromatic starting sites may result from the physical proximity of different heterochromatic regions in germline nuclei or from the association of mobilizing elements with heterochromatin proteins. High frequencies of variegating insertions were also recovered when a potent suppressor of PEV (an extra Y chromosome) was present in both the mobilization and selection generations, presumably due to the effects of chromatin structure on P-element mobilization, insertion, and phenotypic selection. Finally, fewer variegating insertions were recovered after mobilization in females, in comparison to males, which may reflect differences in heterochromatin structure in the female and male germlines. FISH localization of a subset of the insertions confirmed that 98% of the variegating lines contain heterochromatic insertions and that these schemes produce a broader distribution of insertion sites. The results of these schemes have identified the most efficient methods for generating centric heterochromatin P insertions. In addition, the large collection of insertions produced by these screens provides molecular-genetic entry points for mapping, sequencing, and functional analysis of Drosophila heterochromatin.

Full Text

The Full Text of this article is available as a PDF (276.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Berg C. A., Spradling A. C. Studies on the rate and site-specificity of P element transposition. Genetics. 1991 Mar;127(3):515–524. doi: 10.1093/genetics/127.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brasher S. V., Smith B. O., Fogh R. H., Nietlispach D., Thiru A., Nielsen P. R., Broadhurst R. W., Ball L. J., Murzina N. V., Laue E. D. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 2000 Apr 3;19(7):1587–1597. doi: 10.1093/emboj/19.7.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiang A., O'Connor M. B., Paro R., Simon J., Bender W. Discrete Polycomb-binding sites in each parasegmental domain of the bithorax complex. Development. 1995 Jun;121(6):1681–1689. doi: 10.1242/dev.121.6.1681. [DOI] [PubMed] [Google Scholar]
  5. Cooley L., Berg C., Kelley R., McKearin D., Spradling A. Identifying and cloning Drosophila genes by single P element insertional mutagenesis. Prog Nucleic Acid Res Mol Biol. 1989;36:99–109. doi: 10.1016/s0079-6603(08)60164-6. [DOI] [PubMed] [Google Scholar]
  6. Cowieson N. P., Partridge J. F., Allshire R. C., McLaughlin P. J. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol. 2000 May 4;10(9):517–525. doi: 10.1016/s0960-9822(00)00467-x. [DOI] [PubMed] [Google Scholar]
  7. Cryderman D. E., Cuaycong M. H., Elgin S. C., Wallrath L. L. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 1998 Nov;107(5):277–285. doi: 10.1007/s004120050309. [DOI] [PubMed] [Google Scholar]
  8. Daniels S. B., Chovnick A. P element transposition in Drosophila melanogaster: an analysis of sister-chromatid pairs and the formation of intragenic secondary insertions during meiosis. Genetics. 1993 Mar;133(3):623–636. doi: 10.1093/genetics/133.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  10. Dernburg A. F., Sedat J. W., Hawley R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996 Jul 12;86(1):135–146. doi: 10.1016/s0092-8674(00)80084-7. [DOI] [PubMed] [Google Scholar]
  11. Devlin R. H., Bingham B., Wakimoto B. T. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics. 1990 May;125(1):129–140. doi: 10.1093/genetics/125.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dimitri P., Pisano C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics. 1989 Aug;122(4):793–800. doi: 10.1093/genetics/122.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dobie K. W., Kennedy C. D., Velasco V. M., McGrath T. L., Weko J., Patterson R. W., Karpen G. H. Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics. 2001 Apr;157(4):1623–1637. doi: 10.1093/genetics/157.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engels W. R. A trans-acting product needed for P factor transposition in Drosophila. Science. 1984 Dec 7;226(4679):1194–1196. doi: 10.1126/science.6095450. [DOI] [PubMed] [Google Scholar]
  15. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  16. Fauvarque M. O., Dura J. M. polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev. 1993 Aug;7(8):1508–1520. doi: 10.1101/gad.7.8.1508. [DOI] [PubMed] [Google Scholar]
  17. Gasser S. M., Cockell M. M. The molecular biology of the SIR proteins. Gene. 2001 Nov 14;279(1):1–16. doi: 10.1016/s0378-1119(01)00741-7. [DOI] [PubMed] [Google Scholar]
  18. Gatti M., Bonaccorsi S., Pimpinelli S. Looking at Drosophila mitotic chromosomes. Methods Cell Biol. 1994;44:371–391. doi: 10.1016/s0091-679x(08)60924-3. [DOI] [PubMed] [Google Scholar]
  19. Grewal Shiv I. S., Elgin Sarah C. R. Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev. 2002 Apr;12(2):178–187. doi: 10.1016/s0959-437x(02)00284-8. [DOI] [PubMed] [Google Scholar]
  20. Hama C., Ali Z., Kornberg T. B. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 1990 Jul;4(7):1079–1093. doi: 10.1101/gad.4.7.1079. [DOI] [PubMed] [Google Scholar]
  21. Hawley R. S., Irick H., Zitron A. E., Haddox D. A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. doi: 10.1002/dvg.1020130608. [DOI] [PubMed] [Google Scholar]
  22. Hochstenbach R., Harhangi H., Schouren K., Hennig W. Degenerating gypsy retrotransposons in a male fertility gene on the Y chromosome of Drosophila hydei. J Mol Evol. 1994 Nov;39(5):452–465. doi: 10.1007/BF00173414. [DOI] [PubMed] [Google Scholar]
  23. Karpen G. H., Le M. H., Le H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science. 1996 Jul 5;273(5271):118–122. doi: 10.1126/science.273.5271.118. [DOI] [PubMed] [Google Scholar]
  24. Karpen G. H. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994 Apr;4(2):281–291. doi: 10.1016/s0959-437x(05)80055-3. [DOI] [PubMed] [Google Scholar]
  25. Karpen G. H., Spradling A. C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. doi: 10.1093/genetics/132.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kassis J. A., Noll E., VanSickle E. P., Odenwald W. F., Perrimon N. Altering the insertional specificity of a Drosophila transposable element. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1919–1923. doi: 10.1073/pnas.89.5.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Le M. H., Duricka D., Karpen G. H. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics. 1995 Sep;141(1):283–303. doi: 10.1093/genetics/141.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee J. Y., Orr-Weaver T. L. The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol. 2001;17:753–777. doi: 10.1146/annurev.cellbio.17.1.753. [DOI] [PubMed] [Google Scholar]
  29. Liao G. C., Rehm E. J., Rubin G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3347–3351. doi: 10.1073/pnas.050017397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Losada A., Abad J. P., Villasante A. Organization of DNA sequences near the centromere of the Drosophila melanogaster Y chromosome. Chromosoma. 1997 Dec;106(8):503–512. doi: 10.1007/s004120050272. [DOI] [PubMed] [Google Scholar]
  31. McKee B. D., Karpen G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990 Apr 6;61(1):61–72. doi: 10.1016/0092-8674(90)90215-z. [DOI] [PubMed] [Google Scholar]
  32. Murphy T. D., Karpen G. H. Localization of centromere function in a Drosophila minichromosome. Cell. 1995 Aug 25;82(4):599–609. doi: 10.1016/0092-8674(95)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rio D. C. Molecular mechanisms regulating Drosophila P element transposition. Annu Rev Genet. 1990;24:543–578. doi: 10.1146/annurev.ge.24.120190.002551. [DOI] [PubMed] [Google Scholar]
  34. Robertson H. M., Engels W. R. Modified P elements that mimic the P cytotype in Drosophila melanogaster. Genetics. 1989 Dec;123(4):815–824. doi: 10.1093/genetics/123.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roseman R. R., Johnson E. A., Rodesch C. K., Bjerke M., Nagoshi R. N., Geyer P. K. A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics. 1995 Nov;141(3):1061–1074. doi: 10.1093/genetics/141.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  37. Rørth P., Szabo K., Bailey A., Laverty T., Rehm J., Rubin G. M., Weigmann K., Milán M., Benes V., Ansorge W. Systematic gain-of-function genetics in Drosophila. Development. 1998 Mar;125(6):1049–1057. doi: 10.1242/dev.125.6.1049. [DOI] [PubMed] [Google Scholar]
  38. Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
  39. Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sullivan B. A., Blower M. D., Karpen G. H. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet. 2001 Aug;2(8):584–596. doi: 10.1038/35084512. [DOI] [PubMed] [Google Scholar]
  42. Sun X., Wahlstrom J., Karpen G. Molecular structure of a functional Drosophila centromere. Cell. 1997 Dec 26;91(7):1007–1019. doi: 10.1016/s0092-8674(00)80491-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tower J., Karpen G. H., Craig N., Spradling A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. doi: 10.1093/genetics/133.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tower J., Kurapati R. Preferential transposition of a Drosophila P element to the corresponding region of the homologous chromosome. Mol Gen Genet. 1994 Sep 1;244(5):484–490. doi: 10.1007/BF00583899. [DOI] [PubMed] [Google Scholar]
  45. Trapitz P., Glätzer K. H., Bünemann H. Towards a physical map of the fertility genes on the heterochromatic Y chromosome of Drosophila hydei: families of repetitive sequences transcribed on the lampbrush loops Nooses and Threads are organized in extended clusters of several hundred kilobases. Mol Gen Genet. 1992 Nov;235(2-3):221–234. doi: 10.1007/BF00279364. [DOI] [PubMed] [Google Scholar]
  46. Tulin Alexei, Stewart Dianne, Spradling Allan C. The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev. 2002 Aug 15;16(16):2108–2119. doi: 10.1101/gad.1003902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiler K. S., Wakimoto B. T. Heterochromatin and gene expression in Drosophila. Annu Rev Genet. 1995;29:577–605. doi: 10.1146/annurev.ge.29.120195.003045. [DOI] [PubMed] [Google Scholar]
  48. Yan Christopher M., Dobie Kenneth W., Le Hiep D., Konev Alexander Y., Karpen Gary H. Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. Genetics. 2002 May;161(1):217–229. doi: 10.1093/genetics/161.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang P., Spradling A. C. Efficient and dispersed local P element transposition from Drosophila females. Genetics. 1993 Feb;133(2):361–373. doi: 10.1093/genetics/133.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang P., Spradling A. C. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3539–3543. doi: 10.1073/pnas.91.9.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang P., Stankiewicz R. L. Y-Linked male sterile mutations induced by P element in Drosophila melanogaster. Genetics. 1998 Oct;150(2):735–744. doi: 10.1093/genetics/150.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhimulev I. F. Polytene chromosomes, heterochromatin, and position effect variegation. Adv Genet. 1998;37:1–566. doi: 10.1016/s0065-2660(08)60341-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES