Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1247–1255. doi: 10.1093/genetics/161.3.1247

A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana.

Eiji Nambara 1, Masaharu Suzuki 1, Suzanne Abrams 1, Donald R McCarty 1, Yuji Kamiya 1, Peter McCourt 1
PMCID: PMC1462180  PMID: 12136027

Abstract

The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (-)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (-)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.

Full Text

The Full Text of this article is available as a PDF (197.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arenas-Huertero F., Arroyo A., Zhou L., Sheen J., León P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 2000 Aug 15;14(16):2085–2096. [PMC free article] [PubMed] [Google Scholar]
  2. Beaudoin N., Serizet C., Gosti F., Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell. 2000 Jul;12(7):1103–1115. doi: 10.1105/tpc.12.7.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bies-Etheve N., da Silva Conceicao A., Giraudat J., Koornneef M., Léon-Kloosterziel K., Valon C., Delseny M. Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol Biol. 1999 Aug;40(6):1045–1054. doi: 10.1023/a:1006252512202. [DOI] [PubMed] [Google Scholar]
  4. Cutler S., Ghassemian M., Bonetta D., Cooney S., McCourt P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 1996 Aug 30;273(5279):1239–1241. doi: 10.1126/science.273.5279.1239. [DOI] [PubMed] [Google Scholar]
  5. Finkelstein R. R., Lynch T. J. Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol. 2000 Apr;122(4):1179–1186. doi: 10.1104/pp.122.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Finkelstein R. R., Lynch T. J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell. 2000 Apr;12(4):599–609. doi: 10.1105/tpc.12.4.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finkelstein R. R., Wang M. L., Lynch T. J., Rao S., Goodman H. M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell. 1998 Jun;10(6):1043–1054. doi: 10.1105/tpc.10.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gazzarrini S., McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol. 2001 Oct;4(5):387–391. doi: 10.1016/s1369-5266(00)00190-4. [DOI] [PubMed] [Google Scholar]
  9. Ghassemian M., Nambara E., Cutler S., Kawaide H., Kamiya Y., McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell. 2000 Jul;12(7):1117–1126. doi: 10.1105/tpc.12.7.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson S. I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 2000 Dec;124(4):1532–1539. doi: 10.1104/pp.124.4.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F., Goodman H. M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992 Oct;4(10):1251–1261. doi: 10.1105/tpc.4.10.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hugouvieux V., Kwak J. M., Schroeder J. I. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell. 2001 Aug 24;106(4):477–487. doi: 10.1016/s0092-8674(01)00460-3. [DOI] [PubMed] [Google Scholar]
  13. Huijser C., Kortstee A., Pego J., Weisbeek P., Wisman E., Smeekens S. The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J. 2000 Sep;23(5):577–585. doi: 10.1046/j.1365-313x.2000.00822.x. [DOI] [PubMed] [Google Scholar]
  14. Jeannette E., Rona J. P., Bardat F., Cornel D., Sotta B., Miginiac E. Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J. 1999 Apr;18(1):13–22. doi: 10.1046/j.1365-313x.1999.00423.x. [DOI] [PubMed] [Google Scholar]
  15. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  16. Laby R. J., Kincaid M. S., Kim D., Gibson S. I. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 2000 Sep;23(5):587–596. doi: 10.1046/j.1365-313x.2000.00833.x. [DOI] [PubMed] [Google Scholar]
  17. Leung J., Bouvier-Durand M., Morris P. C., Guerrier D., Chefdor F., Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994 Jun 3;264(5164):1448–1452. doi: 10.1126/science.7910981. [DOI] [PubMed] [Google Scholar]
  18. Leung J., Merlot S., Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell. 1997 May;9(5):759–771. doi: 10.1105/tpc.9.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leung Jeffrey, Giraudat Jerome. ABSCISIC ACID SIGNAL TRANSDUCTION. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):199–222. doi: 10.1146/annurev.arplant.49.1.199. [DOI] [PubMed] [Google Scholar]
  20. Lopez-Molina L., Mongrand S., Chua N. H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A. 2001 Apr 3;98(8):4782–4787. doi: 10.1073/pnas.081594298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCourt P., Keith K. Sterile techniques in Arabidopsis. Methods Mol Biol. 1998;82:13–17. doi: 10.1385/0-89603-391-0:13. [DOI] [PubMed] [Google Scholar]
  22. Meyer K., Leube M. P., Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. doi: 10.1126/science.8197457. [DOI] [PubMed] [Google Scholar]
  23. Nakamura S., Lynch T. J., Finkelstein R. R. Physical interactions between ABA response loci of Arabidopsis. Plant J. 2001 Jun;26(6):627–635. doi: 10.1046/j.1365-313x.2001.01069.x. [DOI] [PubMed] [Google Scholar]
  24. Nambara E., Hayama R., Tsuchiya Y., Nishimura M., Kawaide H., Kamiya Y., Naito S. The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol. 2000 Apr 15;220(2):412–423. doi: 10.1006/dbio.2000.9632. [DOI] [PubMed] [Google Scholar]
  25. Nambara E., Keith K., McCourt P., Naito S. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol. 1994 Apr;35(3):509–513. [PubMed] [Google Scholar]
  26. Pego J. V., Weisbeek P. J., Smeekens S. C. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol. 1999 Mar;119(3):1017–1023. doi: 10.1104/pp.119.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Plant G. W., Harvey A. R. A new type of biocompatible bridging structure supports axon regrowth after implantation into the lesioned rat optic tract. Cell Transplant. 2000 Nov-Dec;9(6):759–772. doi: 10.1177/096368970000900603. [DOI] [PubMed] [Google Scholar]
  28. Sondheimer E., Galson E. C., Chang Y. P., Walton D. C. Asymmetry, its importance to the action and metabolism of abscisic Acid. Science. 1971 Nov 19;174(4011):829–831. doi: 10.1126/science.174.4011.829. [DOI] [PubMed] [Google Scholar]
  29. Suzuki M., Kao C. Y., McCarty D. R. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell. 1997 May;9(5):799–807. doi: 10.1105/tpc.9.5.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walker-Simmons M. K., Anderberg R. J., Rose P. A., Abrams S. R. Optically pure abscisic Acid analogs-tools for relating germination inhibition and gene expression in wheat embryos. Plant Physiol. 1992 Jun;99(2):501–507. doi: 10.1104/pp.99.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Windsor M. L., Zeevaart J. A. Induction of ABA 8'-hydroxylase by (+)-S-, (-)-R- and 8'-8'-8'-trifluoro-S-abscisic acid in suspension cultures of potato and Arabidopsis. Phytochemistry. 1997 Jul;45(5):931–934. doi: 10.1016/s0031-9422(97)00022-8. [DOI] [PubMed] [Google Scholar]
  32. Xiong L., Lee Bh, Ishitani M., Lee H., Zhang C., Zhu J. K. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 2001 Aug 1;15(15):1971–1984. doi: 10.1101/gad.891901. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES