Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):217–229. doi: 10.1093/genetics/161.1.217

Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster.

Christopher M Yan 1, Kenneth W Dobie 1, Hiep D Le 1, Alexander Y Konev 1, Gary H Karpen 1
PMCID: PMC1462106  PMID: 12019236

Abstract

Approximately one-third of the human and Drosophila melanogaster genomes are heterochromatic, yet we know very little about the structure and function of this enigmatic component of eukaryotic genomes. To facilitate molecular and cytological analysis of heterochromatin we introduced a yellow(+) (y(+))-marked P element into centric heterochromatin by screening for variegated phenotypes, that is, mosaic gene inactivation. We recovered >110 P insertions with variegated yellow expression from approximately 3500 total mobilization events. FISH analysis of 71 of these insertions showed that 69 (97%) were in the centric heterochromatin, rather than telomeres or euchromatin. High-resolution banding analysis showed a wide but nonuniform distribution of insertions within centric heterochromatin; variegated insertions were predominantly recovered near regions of satellite DNA. We successfully used inverse PCR to clone and sequence the flanking DNA for approximately 63% of the insertions. BLAST analysis of the flanks demonstrated that either most of the variegated insertions could not be placed on the genomic scaffold, and thus may be inserted within novel DNA sequence, or that the flanking DNA hit multiple sites on the scaffold, due to insertions within different transposons. Taken together these data suggest that screening for yellow variegation is a very efficient method for recovering centric insertions and that a large-scale screen for variegated yellow P insertions will provide important tools for detailed analysis of centric heterochromatin structure and function.

Full Text

The Full Text of this article is available as a PDF (342.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Berg C. A., Spradling A. C. Studies on the rate and site-specificity of P element transposition. Genetics. 1991 Mar;127(3):515–524. doi: 10.1093/genetics/127.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Copenhaver G. P., Nickel K., Kuromori T., Benito M. I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L. D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999 Dec 24;286(5449):2468–2474. doi: 10.1126/science.286.5449.2468. [DOI] [PubMed] [Google Scholar]
  4. Cryderman D. E., Cuaycong M. H., Elgin S. C., Wallrath L. L. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 1998 Nov;107(5):277–285. doi: 10.1007/s004120050309. [DOI] [PubMed] [Google Scholar]
  5. Csink A. K., Henikoff S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature. 1996 Jun 6;381(6582):529–531. doi: 10.1038/381529a0. [DOI] [PubMed] [Google Scholar]
  6. Dej K. J., Orr-Weaver T. L. Separation anxiety at the centromere. Trends Cell Biol. 2000 Sep;10(9):392–399. doi: 10.1016/s0962-8924(00)01821-3. [DOI] [PubMed] [Google Scholar]
  7. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  8. Dernburg A. F., Sedat J. W., Hawley R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996 Jul 12;86(1):135–146. doi: 10.1016/s0092-8674(00)80084-7. [DOI] [PubMed] [Google Scholar]
  9. Devlin R. H., Bingham B., Wakimoto B. T. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics. 1990 May;125(1):129–140. doi: 10.1093/genetics/125.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Devlin R. H., Holm D. G., Morin K. R., Honda B. M. Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome. 1990 Jun;33(3):405–415. doi: 10.1139/g90-062. [DOI] [PubMed] [Google Scholar]
  11. Dobie K. W., Kennedy C. D., Velasco V. M., McGrath T. L., Weko J., Patterson R. W., Karpen G. H. Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics. 2001 Apr;157(4):1623–1637. doi: 10.1093/genetics/157.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donaldson K. M., Karpen G. H. Trans-suppression of terminal deficiency-associated position effect variegation in a Drosophila minichromosome. Genetics. 1997 Feb;145(2):325–337. doi: 10.1093/genetics/145.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eggert H., Bergemann K., Saumweber H. Molecular screening for P-element insertions in a large genomic region of Drosophila melanogaster using polymerase chain reaction mediated by the vectorette. Genetics. 1998 Jul;149(3):1427–1434. doi: 10.1093/genetics/149.3.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gatti M., Bonaccorsi S., Pimpinelli S. Looking at Drosophila mitotic chromosomes. Methods Cell Biol. 1994;44:371–391. doi: 10.1016/s0091-679x(08)60924-3. [DOI] [PubMed] [Google Scholar]
  15. Hari K. L., Cook K. R., Karpen G. H. The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev. 2001 Jun 1;15(11):1334–1348. doi: 10.1101/gad.877901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horvath J. E., Schwartz S., Eichler E. E. The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. Genome Res. 2000 Jun;10(6):839–852. doi: 10.1101/gr.10.6.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karpen G. H., Spradling A. C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. doi: 10.1093/genetics/132.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karpen G. H., Spradling A. C. Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila. Cell. 1990 Oct 5;63(1):97–107. doi: 10.1016/0092-8674(90)90291-l. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kurenova E., Champion L., Biessmann H., Mason J. M. Directional gene silencing induced by a complex subtelomeric satellite from Drosophila. Chromosoma. 1998 Nov;107(5):311–320. doi: 10.1007/s004120050313. [DOI] [PubMed] [Google Scholar]
  20. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  21. Le M. H., Duricka D., Karpen G. H. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics. 1995 Sep;141(1):283–303. doi: 10.1093/genetics/141.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liao G. C., Rehm E. J., Rubin G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3347–3351. doi: 10.1073/pnas.050017397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lilly M. A., Spradling A. C. The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 1996 Oct 1;10(19):2514–2526. doi: 10.1101/gad.10.19.2514. [DOI] [PubMed] [Google Scholar]
  24. Lohe A. R., Hilliker A. J., Roberts P. A. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics. 1993 Aug;134(4):1149–1174. doi: 10.1093/genetics/134.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mukai M., Kashikawa M., Kobayashi S. Induction of indora expression in pole cells by the mesoderm is required for female germ-line development in Drosophila melanogaster. Development. 1999 Feb;126(5):1023–1029. doi: 10.1242/dev.126.5.1023. [DOI] [PubMed] [Google Scholar]
  26. Murphy T. D., Karpen G. H. Localization of centromere function in a Drosophila minichromosome. Cell. 1995 Aug 25;82(4):599–609. doi: 10.1016/0092-8674(95)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peacock W. J., Lohe A. R., Gerlach W. L., Dunsmuir P., Dennis E. S., Appels R. Fine structure and evolution of DNA in heterochromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1121–1135. doi: 10.1101/sqb.1978.042.01.113. [DOI] [PubMed] [Google Scholar]
  28. Pimpinelli S., Berloco M., Fanti L., Dimitri P., Bonaccorsi S., Marchetti E., Caizzi R., Caggese C., Gatti M. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3804–3808. doi: 10.1073/pnas.92.9.3804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roseman R. R., Johnson E. A., Rodesch C. K., Bjerke M., Nagoshi R. N., Geyer P. K. A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics. 1995 Nov;141(3):1061–1074. doi: 10.1093/genetics/141.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubin G. M., Hong L., Brokstein P., Evans-Holm M., Frise E., Stapleton M., Harvey D. A. A Drosophila complementary DNA resource. Science. 2000 Mar 24;287(5461):2222–2224. doi: 10.1126/science.287.5461.2222. [DOI] [PubMed] [Google Scholar]
  31. Schueler M. G., Higgins A. W., Rudd M. K., Gustashaw K., Willard H. F. Genomic and genetic definition of a functional human centromere. Science. 2001 Oct 5;294(5540):109–115. doi: 10.1126/science.1065042. [DOI] [PubMed] [Google Scholar]
  32. Smaragdov M. G., Smirnov A. F., Rodionov A. V. Agregatsiia geterokhromatinovykh raionov khromosom v neiroblastakh Drosophila melanogaster. Tsitol Genet. 1980 May-Jun;14(3):37–42. [PubMed] [Google Scholar]
  33. Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sullivan B. A., Blower M. D., Karpen G. H. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet. 2001 Aug;2(8):584–596. doi: 10.1038/35084512. [DOI] [PubMed] [Google Scholar]
  36. Sun F. L., Cuaycong M. H., Craig C. A., Wallrath L. L., Locke J., Elgin S. C. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5340–5345. doi: 10.1073/pnas.090530797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sun X., Wahlstrom J., Karpen G. Molecular structure of a functional Drosophila centromere. Cell. 1997 Dec 26;91(7):1007–1019. doi: 10.1016/s0092-8674(00)80491-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tolchkov E. V., Kramerova I. A., Lavrov S. A., Rasheva V. I., Bonaccorsi S., Alatortsev V. E., Gvozdev V. A. Position-effect variegation in Drosophila melanogaster X chromosome inversion with a breakpoint in a satellite block and its suppression in a secondary rearrangement. Chromosoma. 1997 Dec;106(8):520–525. doi: 10.1007/s004120050274. [DOI] [PubMed] [Google Scholar]
  39. Tower J., Karpen G. H., Craig N., Spradling A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. doi: 10.1093/genetics/133.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wallrath L. L., Elgin S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995 May 15;9(10):1263–1277. doi: 10.1101/gad.9.10.1263. [DOI] [PubMed] [Google Scholar]
  41. Wallrath L. L., Guntur V. P., Rosman L. E., Elgin S. C. DNA representation of variegating heterochromatic P-element inserts in diploid and polytene tissues of Drosophila melanogaster. Chromosoma. 1996 Apr;104(7):519–527. doi: 10.1007/BF00352116. [DOI] [PubMed] [Google Scholar]
  42. Wevrick R., Willard V. P., Willard H. F. Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics. 1992 Dec;14(4):912–923. doi: 10.1016/s0888-7543(05)80112-0. [DOI] [PubMed] [Google Scholar]
  43. Zhang P., Spradling A. C. Efficient and dispersed local P element transposition from Drosophila females. Genetics. 1993 Feb;133(2):361–373. doi: 10.1093/genetics/133.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhang P., Spradling A. C. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3539–3543. doi: 10.1073/pnas.91.9.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang P., Spradling A. C. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics. 1995 Feb;139(2):659–670. doi: 10.1093/genetics/139.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhang P., Stankiewicz R. L. Y-Linked male sterile mutations induced by P element in Drosophila melanogaster. Genetics. 1998 Oct;150(2):735–744. doi: 10.1093/genetics/150.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES