Skip to main content
Genetics logoLink to Genetics
. 2000 Jun;155(2):855–862. doi: 10.1093/genetics/155.2.855

Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea.

M D Purugganan 1, A L Boyles 1, J I Suddith 1
PMCID: PMC1461124  PMID: 10835404

Abstract

The evolution of plant morphologies during domestication events provides clues to the origin of crop species and the evolutionary genetics of structural diversification. The CAULIFLOWER gene, a floral regulatory locus, has been implicated in the cauliflower phenotype in both Arabidopsis thaliana and Brassica oleracea. Molecular population genetic analysis indicates that alleles carrying a nonsense mutation in exon 5 of the B. oleracea CAULIFLOWER (BoCAL) gene are segregating in both wild and domesticated B. oleracea subspecies. Alleles carrying this nonsense mutation are nearly fixed in B. oleracea ssp. botrytis (domestic cauliflower) and B. oleracea ssp. italica (broccoli), both of which show evolutionary modifications of inflorescence structures. Tests for selection indicate that the pattern of variation at this locus is consistent with positive selection at BoCAL in these two subspecies. This nonsense polymorphism, however, is also present in both B. oleracea ssp. acephala (kale) and B. oleracea ssp. oleracea (wild cabbage). These results indicate that specific alleles of BoCAL were selected by early farmers during the domestication of modified inflorescence structures in B. oleracea.

Full Text

The Full Text of this article is available as a PDF (146.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F. Insights into the evolutionary process from patterns of DNA sequence variability. Curr Opin Genet Dev. 1997 Dec;7(6):835–840. doi: 10.1016/s0959-437x(97)80048-2. [DOI] [PubMed] [Google Scholar]
  2. Bohuon E. J., Ramsay L. D., Craft J. A., Arthur A. E., Marshall D. F., Lydiate D. J., Kearsey M. J. The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics. 1998 Sep;150(1):393–401. doi: 10.1093/genetics/150.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carr S. M., Irish V. F. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta. 1997;201(2):179–188. doi: 10.1007/BF01007702. [DOI] [PubMed] [Google Scholar]
  4. Doebley J. Genetics, development and plant evolution. Curr Opin Genet Dev. 1993 Dec;3(6):865–872. doi: 10.1016/0959-437x(93)90006-b. [DOI] [PubMed] [Google Scholar]
  5. Doebley J., Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell. 1998 Jul;10(7):1075–1082. doi: 10.1105/tpc.10.7.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doebley J., Stec A., Hubbard L. The evolution of apical dominance in maize. Nature. 1997 Apr 3;386(6624):485–488. doi: 10.1038/386485a0. [DOI] [PubMed] [Google Scholar]
  7. Eyre-Walker A., Gaut R. L., Hilton H., Feldman D. L., Gaut B. S. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441–4446. doi: 10.1073/pnas.95.8.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gustafson-Brown C., Savidge B., Yanofsky M. F. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell. 1994 Jan 14;76(1):131–143. doi: 10.1016/0092-8674(94)90178-3. [DOI] [PubMed] [Google Scholar]
  10. Hamblin M. T., Aquadro C. F. Contrasting patterns of nucleotide sequence variation at the glucose dehydrogenase (Gld) locus in different populations of Drosophila melanogaster. Genetics. 1997 Apr;145(4):1053–1062. doi: 10.1093/genetics/145.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanson M. A., Gaut B. S., Stec A. O., Fuerstenberg S. I., Goodman M. M., Coe E. H., Doebley J. F. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics. 1996 Jul;143(3):1395–1407. doi: 10.1093/genetics/143.3.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hey J., Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hilton H., Gaut B. S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics. 1998 Oct;150(2):863–872. doi: 10.1093/genetics/150.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kempin S. A., Savidge B., Yanofsky M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995 Jan 27;267(5197):522–525. doi: 10.1126/science.7824951. [DOI] [PubMed] [Google Scholar]
  16. Lowman A. C., Purugganan M. D. Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. J Hered. 1999 Sep-Oct;90(5):514–520. doi: 10.1093/jhered/90.5.514. [DOI] [PubMed] [Google Scholar]
  17. Mandel M. A., Gustafson-Brown C., Savidge B., Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. doi: 10.1038/360273a0. [DOI] [PubMed] [Google Scholar]
  18. Olsen K. M., Schaal B. A. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5586–5591. doi: 10.1073/pnas.96.10.5586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Purugganan M. D., Suddith J. I. Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics. 1999 Feb;151(2):839–848. doi: 10.1093/genetics/151.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Purugganan M. D., Suddith J. I. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8130–8134. doi: 10.1073/pnas.95.14.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Riechmann J. L., Meyerowitz E. M. MADS domain proteins in plant development. Biol Chem. 1997 Oct;378(10):1079–1101. [PubMed] [Google Scholar]
  22. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  23. Simonsen K. L., Churchill G. A., Aquadro C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. doi: 10.1093/genetics/141.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang R. L., Stec A., Hey J., Lukens L., Doebley J. The limits of selection during maize domestication. Nature. 1999 Mar 18;398(6724):236–239. doi: 10.1038/18435. [DOI] [PubMed] [Google Scholar]
  26. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet. 1995;29:19–39. doi: 10.1146/annurev.ge.29.120195.000315. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES