Skip to main content
Genetics logoLink to Genetics
. 1999 Mar;151(3):1093–1101. doi: 10.1093/genetics/151.3.1093

Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster.

K J Sepp 1, V J Auld 1
PMCID: PMC1460539  PMID: 10049925

Abstract

Since the development of the enhancer trap technique, many large libraries of nuclear localized lacZ P-element stocks have been generated. These lines can lend themselves to the molecular and biological characterization of new genes. However they are not as useful for the study of development of cellular morphologies. With the advent of the GAL4 expression system, enhancer traps have a far greater potential for utility in biological studies. Yet generation of GAL4 lines by standard random mobilization has been reported to have a low efficiency. To avoid this problem we have employed targeted transposition to generate glial-specific GAL4 lines for the study of glial cellular development. Targeted transposition is the precise exchange of one P element for another. We report the successful and complete replacement of two glial enhancer trap P[lacZ, ry+] elements with the P[GAL4, w+] element. The frequencies of transposition to the target loci were 1.3% and 0.4%. We have thus found it more efficient to generate GAL4 lines from preexisting P-element lines than to obtain tissue-specific expression of GAL4 by random P-element mobilization. It is likely that similar screens can be performed to convert many other P-element lines to the GAL4 system.

Full Text

The Full Text of this article is available as a PDF (290.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld V. J., Fetter R. D., Broadie K., Goodman C. S. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell. 1995 Jun 2;81(5):757–767. doi: 10.1016/0092-8674(95)90537-5. [DOI] [PubMed] [Google Scholar]
  2. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  3. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  4. Dray T., Gloor G. B. Homology requirements for targeting heterologous sequences during P-induced gap repair in Drosophila melanogaster. Genetics. 1997 Oct;147(2):689–699. doi: 10.1093/genetics/147.2.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  6. Geyer P. K., Richardson K. L., Corces V. G., Green M. M. Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6455–6459. doi: 10.1073/pnas.85.17.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gloor G. B., Nassif N. A., Johnson-Schlitz D. M., Preston C. R., Engels W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
  8. Gonzy-Tréboul G., Lepesant J. A., Deutsch J. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster. Genes Dev. 1995 May 1;9(9):1137–1148. doi: 10.1101/gad.9.9.1137. [DOI] [PubMed] [Google Scholar]
  9. Gustafson K., Boulianne G. L. Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome. 1996 Feb;39(1):174–182. doi: 10.1139/g96-023. [DOI] [PubMed] [Google Scholar]
  10. Hidalgo A., Urban J., Brand A. H. Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS. Development. 1995 Nov;121(11):3703–3712. doi: 10.1242/dev.121.11.3703. [DOI] [PubMed] [Google Scholar]
  11. Jacobs J. R., Goodman C. S. Embryonic development of axon pathways in the Drosophila CNS. I. A glial scaffold appears before the first growth cones. J Neurosci. 1989 Jul;9(7):2402–2411. doi: 10.1523/JNEUROSCI.09-07-02402.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson-Schlitz D. M., Engels W. R. P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster. Mol Cell Biol. 1993 Nov;13(11):7006–7018. doi: 10.1128/mcb.13.11.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones B. W., Fetter R. D., Tear G., Goodman C. S. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell. 1995 Sep 22;82(6):1013–1023. doi: 10.1016/0092-8674(95)90280-5. [DOI] [PubMed] [Google Scholar]
  14. Keeler K. J., Gloor G. B. Efficient gap repair in Drosophila melanogaster requires a maximum of 31 nucleotides of homologous sequence at the searching ends. Mol Cell Biol. 1997 Feb;17(2):627–634. doi: 10.1128/mcb.17.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klaes A., Menne T., Stollewerk A., Scholz H., Klämbt C. The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell. 1994 Jul 15;78(1):149–160. doi: 10.1016/0092-8674(94)90581-9. [DOI] [PubMed] [Google Scholar]
  16. Klämbt C., Goodman C. S. The diversity and pattern of glia during axon pathway formation in the Drosophila embryo. Glia. 1991;4(2):205–213. doi: 10.1002/glia.440040212. [DOI] [PubMed] [Google Scholar]
  17. Klämbt C., Jacobs J. R., Goodman C. S. The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell. 1991 Feb 22;64(4):801–815. doi: 10.1016/0092-8674(91)90509-w. [DOI] [PubMed] [Google Scholar]
  18. Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patel N. H., Snow P. M., Goodman C. S. Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell. 1987 Mar 27;48(6):975–988. doi: 10.1016/0092-8674(87)90706-9. [DOI] [PubMed] [Google Scholar]
  20. Searles L. L., Jokerst R. S., Bingham P. M., Voelker R. A., Greenleaf A. L. Molecular cloning of sequences from a Drosophila RNA polymerase II locus by P element transposon tagging. Cell. 1982 Dec;31(3 Pt 2):585–592. doi: 10.1016/0092-8674(82)90314-2. [DOI] [PubMed] [Google Scholar]
  21. Staveley B. E., Hodgetts R. B., O'Keefe S. L., Bell J. B. Targeting of an enhancer trap to vestigial. Dev Biol. 1994 Sep;165(1):290–293. doi: 10.1006/dbio.1994.1254. [DOI] [PubMed] [Google Scholar]
  22. Takasu-Ishikawa E., Yoshihara M., Hotta Y. Extra sequences found at P element excision sites in Drosophila melanogaster. Mol Gen Genet. 1992 Mar;232(1):17–23. doi: 10.1007/BF00299132. [DOI] [PubMed] [Google Scholar]
  23. Vactor D. V., Sink H., Fambrough D., Tsoo R., Goodman C. S. Genes that control neuromuscular specificity in Drosophila. Cell. 1993 Jun 18;73(6):1137–1153. doi: 10.1016/0092-8674(93)90643-5. [DOI] [PubMed] [Google Scholar]
  24. Wilson C., Pearson R. K., Bellen H. J., O'Kane C. J., Grossniklaus U., Gehring W. J. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 1989 Sep;3(9):1301–1313. doi: 10.1101/gad.3.9.1301. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES