Skip to main content
Genetics logoLink to Genetics
. 1998 Feb;148(2):775–792. doi: 10.1093/genetics/148.2.775

The transmission of fragmented chromosomes in Drosophila melanogaster.

K Ahmad 1, K G Golic 1
PMCID: PMC1459826  PMID: 9504924

Abstract

We investigated the fate of dicentric chromosomes in the mitotic divisions of Drosophila melanogaster. We constructed chromosomes that were not required for viability and that carried P elements with inverted repeats of the target sites (FRTs) for the FLP site-specific recombinase. FLP-mediated unequal sister-chromatid exchange between inverted FRTs produced dicentric chromosomes at a high rate. The fate of the dicentric chromosome was evaluated in the mitotic cells of the male germline. We found that dicentric chromosomes break in mitosis, and the broken fragments can be transmitted. Some of these chromosome fragments exhibit dominant semilethality. Nonlethal fragments were broken at many sites along the chromosome, but the semilethal fragments were all broken near the original site of sister-chromatid fusion, and retained P element sequences near their termini. We discuss the implications of the recovery and behavior of broken chromosomes for checkpoints that detect double-strand break damage and the functions of telomeres in Drosophila.

Full Text

The Full Text of this article is available as a PDF (302.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad K., Golic K. G. Somatic reversion of chromosomal position effects in Drosophila melanogaster. Genetics. 1996 Oct;144(2):657–670. doi: 10.1093/genetics/144.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachiller D., Sánchez L. Production of X0 clones in XX females of Drosophila. Genet Res. 1991 Feb;57(1):23–28. doi: 10.1017/s0016672300028998. [DOI] [PubMed] [Google Scholar]
  3. Beall E. L., Admon A., Rio D. C. A Drosophila protein homologous to the human p70 Ku autoimmune antigen interacts with the P transposable element inverted repeats. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12681–12685. doi: 10.1073/pnas.91.26.12681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beall E. L., Rio D. C. Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev. 1996 Apr 15;10(8):921–933. doi: 10.1101/gad.10.8.921. [DOI] [PubMed] [Google Scholar]
  5. Biessmann H., Champion L. E., O'Hair M., Ikenaga K., Kasravi B., Mason J. M. Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J. 1992 Dec;11(12):4459–4469. doi: 10.1002/j.1460-2075.1992.tb05547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biessmann H., Mason J. M., Ferry K., d'Hulst M., Valgeirsdottir K., Traverse K. L., Pardue M. L. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell. 1990 May 18;61(4):663–673. doi: 10.1016/0092-8674(90)90478-w. [DOI] [PubMed] [Google Scholar]
  7. Biessmann H., Mason J. M. Telomeric repeat sequences. Chromosoma. 1994 Jun;103(3):154–161. doi: 10.1007/BF00368007. [DOI] [PubMed] [Google Scholar]
  8. Blackburn E. H. The molecular structure of centromeres and telomeres. Annu Rev Biochem. 1984;53:163–194. doi: 10.1146/annurev.bi.53.070184.001115. [DOI] [PubMed] [Google Scholar]
  9. Bonner J. J., Parks C., Parker-Thornburg J., Mortin M. A., Pelham H. R. The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell. 1984 Jul;37(3):979–991. doi: 10.1016/0092-8674(84)90432-x. [DOI] [PubMed] [Google Scholar]
  10. Dunn B., Szauter P., Pardue M. L., Szostak J. W. Transfer of yeast telomeres to linear plasmids by recombination. Cell. 1984 Nov;39(1):191–201. doi: 10.1016/0092-8674(84)90205-8. [DOI] [PubMed] [Google Scholar]
  11. Engels W. R., Preston C. R. Formation of chromosome rearrangements by P factors in Drosophila. Genetics. 1984 Aug;107(4):657–678. doi: 10.1093/genetics/107.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Falco S. C., Li Y., Broach J. R., Botstein D. Genetic properties of chromosomally integrated 2 mu plasmid DNA in yeast. Cell. 1982 Jun;29(2):573–584. doi: 10.1016/0092-8674(82)90173-8. [DOI] [PubMed] [Google Scholar]
  13. Golic K. G., Golic M. M. Engineering the Drosophila genome: chromosome rearrangements by design. Genetics. 1996 Dec;144(4):1693–1711. doi: 10.1093/genetics/144.4.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Golic K. G., Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 1989 Nov 3;59(3):499–509. doi: 10.1016/0092-8674(89)90033-0. [DOI] [PubMed] [Google Scholar]
  15. Golic K. G. Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics. 1994 Jun;137(2):551–563. doi: 10.1093/genetics/137.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Golic M. M., Golic K. G. A quantitative measure of the mitotic pairing of alleles in Drosophila melanogaster and the influence of structural heterozygosity. Genetics. 1996 May;143(1):385–400. doi: 10.1093/genetics/143.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Golic M. M., Rong Y. S., Petersen R. B., Lindquist S. L., Golic K. G. FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res. 1997 Sep 15;25(18):3665–3671. doi: 10.1093/nar/25.18.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grell R. F. Heat-induced exchange in the fourth chromosome of diploid females of Drosophila melanogaster. Genetics. 1971 Dec;69(4):523–527. doi: 10.1093/genetics/69.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haber J. E., Thorburn P. C. Healing of broken linear dicentric chromosomes in yeast. Genetics. 1984 Feb;106(2):207–226. doi: 10.1093/genetics/106.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
  21. Hinton C W. A Cytological Study of W Chromosome Instability in Cleavage Mitoses of Drosophila Melanogaster. Genetics. 1959 Sep;44(5):923–931. doi: 10.1093/genetics/44.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hinton C W. The Behavior of an Unstable Ring Chromosome of Drosophila Melanogaster. Genetics. 1955 Nov;40(6):951–961. doi: 10.1093/genetics/40.6.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karpen G. H., Spradling A. C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. doi: 10.1093/genetics/132.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaufman P. D., Doll R. F., Rio D. C. Drosophila P element transposase recognizes internal P element DNA sequences. Cell. 1989 Oct 20;59(2):359–371. doi: 10.1016/0092-8674(89)90297-3. [DOI] [PubMed] [Google Scholar]
  25. Le M. H., Duricka D., Karpen G. H. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics. 1995 Sep;141(1):283–303. doi: 10.1093/genetics/141.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Levis R. W., Ganesan R., Houtchens K., Tolar L. A., Sheen F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. doi: 10.1016/0092-8674(93)90318-k. [DOI] [PubMed] [Google Scholar]
  27. Levis R. W. Viable deletions of a telomere from a Drosophila chromosome. Cell. 1989 Aug 25;58(4):791–801. doi: 10.1016/0092-8674(89)90112-8. [DOI] [PubMed] [Google Scholar]
  28. Levis R., Hazelrigg T., Rubin G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science. 1985 Aug 9;229(4713):558–561. doi: 10.1126/science.2992080. [DOI] [PubMed] [Google Scholar]
  29. Lindsley D L, Novitski E. Localization of the Genetic Factors Responsible for the Kinetic Activity of X Chromosomes of Drosophila Melanogaster. Genetics. 1958 Sep;43(5):790–798. doi: 10.1093/genetics/43.5.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mason J. M., Champion L. E., Hook G. Germ-line effects of a mutator, mu2, in Drosophila melanogaster. Genetics. 1997 Aug;146(4):1381–1397. doi: 10.1093/genetics/146.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mason J. M., Strobel E., Green M. M. mu-2: mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6090–6094. doi: 10.1073/pnas.81.19.6090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McClintock B. The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A. 1939 Aug;25(8):405–416. doi: 10.1073/pnas.25.8.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McCusker J. H., Haber J. E. Evidence of Chromosomal Breaks near the Mating-Type Locus of SACCHAROMYCES CEREVISIAE That Accompany MATalpha xMATalpha Matings. Genetics. 1981 Nov;99(3-4):383–403. doi: 10.1093/genetics/99.3-4.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Merriam J. R., Nöthiger R., Garcia-Bellido A. Are dicentric anaphase bridges formed by somatic recombination in X chromosome inversion heterozygotes of Drosophila melanogaster? Mol Gen Genet. 1972;115(4):294–301. doi: 10.1007/BF00333168. [DOI] [PubMed] [Google Scholar]
  35. Novitski E. The Genetic Consequences of Anaphase Bridge Formation in Drosophila. Genetics. 1952 May;37(3):270–287. doi: 10.1093/genetics/37.3.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ripoll P., García-Bellido A. Viability of Homozygous Deficiencies in Somatic Cells of DROSOPHILA MELANOGASTER. Genetics. 1979 Mar;91(3):443–453. doi: 10.1093/genetics/91.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  38. Sandell L. L., Gottschling D. E., Zakian V. A. Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12061–12065. doi: 10.1073/pnas.91.25.12061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sandell L. L., Zakian V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell. 1993 Nov 19;75(4):729–739. doi: 10.1016/0092-8674(93)90493-a. [DOI] [PubMed] [Google Scholar]
  40. Siede W., Friedl A. A., Dianova I., Eckardt-Schupp F., Friedberg E. C. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics. 1996 Jan;142(1):91–102. doi: 10.1093/genetics/142.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Staveley B. E., Heslip T. R., Hodgetts R. B., Bell J. B. Protected P-element termini suggest a role for inverted-repeat-binding protein in transposase-induced gap repair in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1321–1329. doi: 10.1093/genetics/139.3.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Taccioli G. E., Rathbun G., Oltz E., Stamato T., Jeggo P. A., Alt F. W. Impairment of V(D)J recombination in double-strand break repair mutants. Science. 1993 Apr 9;260(5105):207–210. doi: 10.1126/science.8469973. [DOI] [PubMed] [Google Scholar]
  44. Traverse K. L., Pardue M. L. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8116–8120. doi: 10.1073/pnas.85.21.8116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wallrath L. L., Elgin S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995 May 15;9(10):1263–1277. doi: 10.1101/gad.9.10.1263. [DOI] [PubMed] [Google Scholar]
  46. Walter M. F., Jang C., Kasravi B., Donath J., Mechler B. M., Mason J. M., Biessmann H. DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma. 1995 Dec;104(4):229–241. doi: 10.1007/BF00352254. [DOI] [PubMed] [Google Scholar]
  47. Wang S. S., Zakian V. A. Telomere-telomere recombination provides an express pathway for telomere acquisition. Nature. 1990 May 31;345(6274):456–458. doi: 10.1038/345456a0. [DOI] [PubMed] [Google Scholar]
  48. Young B. S., Pession A., Traverse K. L., French C., Pardue M. L. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell. 1983 Aug;34(1):85–94. doi: 10.1016/0092-8674(83)90138-1. [DOI] [PubMed] [Google Scholar]
  49. Zakian V. A. Structure and function of telomeres. Annu Rev Genet. 1989;23:579–604. doi: 10.1146/annurev.ge.23.120189.003051. [DOI] [PubMed] [Google Scholar]
  50. Zalokar M., Erk I., Santamaría P. Distribution of ring-X chromosomes in the blastoderm of gynandromorphic D. melanogaster. Cell. 1980 Jan;19(1):133–141. doi: 10.1016/0092-8674(80)90394-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES