Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1509–1524. doi: 10.1105/tpc.11.8.1509

Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles

G Hinz 1, S Hillmer 1, M Baumer 1, I Hohl I 1
PMCID: PMC144284  PMID: 10449584

Abstract

In the parenchyma cells of developing legume cotyledons, storage proteins are deposited in a special type of vacuole, known as the protein storage vacuole (PSV). Storage proteins are synthesized at the endoplasmic reticulum and pass through the Golgi apparatus. In contrast to lysosomal acid hydrolases, storage proteins exit the Golgi apparatus in 130-nm-diameter electron-dense vesicles rather than in clathrin-coated vesicles. By combining isopycnic and rate zonal sucrose density gradient centrifugation with phase partitioning, we obtained a highly enriched dense vesicle fraction. This fraction contained prolegumin, which is the precursor of one of the major storage proteins. In dense vesicles, prolegumin occurred in a more aggregated form than it did in the endoplasmic reticulum. The putative vacuolar sorting receptor BP-80 was highly enriched in purified clathrin-coated vesicles, which, in turn, did not contain prolegumin. The amount of BP-80 was markedly reduced in the dense vesicle fraction. This result was confirmed by quantitative immunogold labeling of cryosections of pea cotyledons: whereas antibodies raised against BP-80 significantly labeled the Golgi stacks, labeling of the dense vesicles could not be detected. In contrast, 90% of the dense vesicles were labeled with antibodies raised against alpha-TIP (for tonoplast intrinsic protein), which is the aquaporin specific for the membrane of the PSV. These results lead to the conclusions that storage proteins and alpha-TIP are delivered via the same vesicular pathway into the PSVs and that the dense vesicles that carry these proteins in turn do not contain BP-80.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. U., Bar-Peled M., Raikhel N. V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 1997 May;114(1):325–336. doi: 10.1104/pp.114.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassham D. C., Gal S., da Silva Conceiço A., Raikhel N. V. An Arabidopsis syntaxin homologue isolated by functional complementation of a yeast pep12 mutant. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7262–7266. doi: 10.1073/pnas.92.16.7262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chao H. H., Waheed A., Pohlmann R., Hille A., von Figura K. Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J. 1990 Nov;9(11):3507–3513. doi: 10.1002/j.1460-2075.1990.tb07559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chrispeels M. J., Higgins T. J., Craig S., Spencer D. Role of the endoplasmic reticulum in the synthesis of reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J Cell Biol. 1982 Apr;93(1):5–14. doi: 10.1083/jcb.93.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chrispeels M. J., Higgins T. J., Spencer D. Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol. 1982 May;93(2):306–313. doi: 10.1083/jcb.93.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conibear E., Stevens T. H. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):211–230. doi: 10.1016/s0167-4889(98)00058-5. [DOI] [PubMed] [Google Scholar]
  7. Cooper A. A., Stevens T. H. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol. 1996 May;133(3):529–541. doi: 10.1083/jcb.133.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dhugga K. S., Tiwari S. C., Ray P. M. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7679–7684. doi: 10.1073/pnas.94.14.7679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Di Sansebastiano G. P., Paris N., Marc-Martin S., Neuhaus J. M. Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 1998 Aug;15(4):449–457. doi: 10.1046/j.1365-313x.1998.00210.x. [DOI] [PubMed] [Google Scholar]
  11. Dickinson C. D., Hussein E. H., Nielsen N. C. Role of posttranslational cleavage in glycinin assembly. Plant Cell. 1989 Apr;1(4):459–469. doi: 10.1105/tpc.1.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Futter C. E., Pearse A., Hewlett L. J., Hopkins C. R. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol. 1996 Mar;132(6):1011–1023. doi: 10.1083/jcb.132.6.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gomez L., Chrispeels M. J. Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms. Plant Cell. 1993 Sep;5(9):1113–1124. doi: 10.1105/tpc.5.9.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hara-Hishimura I., Takeuchi Y., Inoue K., Nishimura M. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 1993 Nov;4(5):793–800. doi: 10.1046/j.1365-313x.1993.04050793.x. [DOI] [PubMed] [Google Scholar]
  15. Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett. 1991 Dec 2;294(1-2):89–93. doi: 10.1016/0014-5793(91)81349-d. [DOI] [PubMed] [Google Scholar]
  16. Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles . Plant Cell. 1998 May;10(5):825–836. doi: 10.1105/tpc.10.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoh B., Hinz G., Jeong B. K., Robinson D. G. Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci. 1995 Jan;108(Pt 1):299–310. doi: 10.1242/jcs.108.1.299. [DOI] [PubMed] [Google Scholar]
  18. Hohl I., Robinson D. G., Chrispeels M. J., Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci. 1996 Oct;109(Pt 10):2539–2550. doi: 10.1242/jcs.109.10.2539. [DOI] [PubMed] [Google Scholar]
  19. Holstein S. E., Drucker M., Robinson D. G. Identification of a beta-type adaptin in plant clathrin-coated vesicles. J Cell Sci. 1994 Apr;107(Pt 4):945–953. doi: 10.1242/jcs.107.4.945. [DOI] [PubMed] [Google Scholar]
  20. Horazdovsky B. F., DeWald D. B., Emr S. D. Protein transport to the yeast vacuole. Curr Opin Cell Biol. 1995 Aug;7(4):544–551. doi: 10.1016/0955-0674(95)80012-3. [DOI] [PubMed] [Google Scholar]
  21. Höfte H., Chrispeels M. J. Protein sorting to the vacuolar membrane. Plant Cell. 1992 Aug;4(8):995–1004. doi: 10.1105/tpc.4.8.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jauh G. Y., Fischer A. M., Grimes H. D., Ryan C. A., Jr, Rogers J. C. delta-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12995–12999. doi: 10.1073/pnas.95.22.12995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiang L., Rogers J. C. Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol. 1998 Nov 30;143(5):1183–1199. doi: 10.1083/jcb.143.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnson K. D., Herman E. M., Chrispeels M. J. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 1989 Nov;91(3):1006–1013. doi: 10.1104/pp.91.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jung R., Scott M. P., Nam Y. W., Beaman T. W., Bassüner R., Saalbach I., Müntz K., Nielsen N. C. The role of proteolysis in the processing and assembly of 11S seed globulins. Plant Cell. 1998 Mar;10(3):343–357. doi: 10.1105/tpc.10.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kirsch T., Paris N., Butler J. M., Beevers L., Rogers J. C. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3403–3407. doi: 10.1073/pnas.91.8.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kirsch T., Saalbach G., Raikhel N. V., Beevers L. Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants. Plant Physiol. 1996 Jun;111(2):469–474. doi: 10.1104/pp.111.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kuliawat R., Klumperman J., Ludwig T., Arvan P. Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic beta-cells. J Cell Biol. 1997 May 5;137(3):595–608. doi: 10.1083/jcb.137.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Laurière M., Laurière C., Chrispeels M. J., Johnson K. D., Sturm A. Characterization of a xylose-specific antiserum that reacts with the complex asparagine-linked glycans of extracellular and vacuolar glycoproteins. Plant Physiol. 1989 Jul;90(3):1182–1188. doi: 10.1104/pp.90.3.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Le Borgne R., Hoflack B. Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):195–209. doi: 10.1016/s0167-4889(98)00057-3. [DOI] [PubMed] [Google Scholar]
  33. Liou W., Geuze H. J., Slot J. W. Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol. 1996 Jul;106(1):41–58. doi: 10.1007/BF02473201. [DOI] [PubMed] [Google Scholar]
  34. Marcusson E. G., Horazdovsky B. F., Cereghino J. L., Gharakhanian E., Emr S. D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell. 1994 May 20;77(4):579–586. doi: 10.1016/0092-8674(94)90219-4. [DOI] [PubMed] [Google Scholar]
  35. Matsuoka K., Bassham D. C., Raikhel N. V., Nakamura K. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol. 1995 Sep;130(6):1307–1318. doi: 10.1083/jcb.130.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Müntz K. Deposition of storage proteins. Plant Mol Biol. 1998 Sep;38(1-2):77–99. [PubMed] [Google Scholar]
  37. Neuhaus J. M., Rogers J. C. Sorting of proteins to vacuoles in plant cells. Plant Mol Biol. 1998 Sep;38(1-2):127–144. [PubMed] [Google Scholar]
  38. Paris N., Rogers S. W., Jiang L., Kirsch T., Beevers L., Phillips T. E., Rogers J. C. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 1997 Sep;115(1):29–39. doi: 10.1104/pp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Paris N., Stanley C. M., Jones R. L., Rogers J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996 May 17;85(4):563–572. doi: 10.1016/s0092-8674(00)81256-8. [DOI] [PubMed] [Google Scholar]
  40. Riederer B. M. Antigen preservation tests for immunocytochemical detection of cytoskeletal proteins: influence of aldehyde fixatives. J Histochem Cytochem. 1989 May;37(5):675–681. doi: 10.1177/37.5.2495321. [DOI] [PubMed] [Google Scholar]
  41. Saalbach G., Jung R., Kunze G., Saalbach I., Adler K., Müntz K. Different legumin protein domains act as vacuolar targeting signals. Plant Cell. 1991 Jul;3(7):695–708. doi: 10.1105/tpc.3.7.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sanderfoot A. A., Ahmed S. U., Marty-Mazars D., Rapoport I., Kirchhausen T., Marty F., Raikhel N. V. A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9920–9925. doi: 10.1073/pnas.95.17.9920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sandoval I. V., Bakke O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 1994 Aug;4(8):292–297. doi: 10.1016/0962-8924(94)90220-8. [DOI] [PubMed] [Google Scholar]
  44. Shimada T., Kuroyanagi M., Nishimura M., Hara-Nishimura I. A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 1997 Dec;38(12):1414–1420. doi: 10.1093/oxfordjournals.pcp.a029138. [DOI] [PubMed] [Google Scholar]
  45. Stack J. H., Horazdovsky B., Emr S. D. Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu Rev Cell Dev Biol. 1995;11:1–33. doi: 10.1146/annurev.cb.11.110195.000245. [DOI] [PubMed] [Google Scholar]
  46. Taylor-Robinson S. D., Sargentoni J., Bell J. D., Saeed N., Changani K. K., Davidson B. R., Rolles K., Burroughs A. K., Hodgson H. J., Foster C. S. In vivo and in vitro hepatic 31P magnetic resonance spectroscopy and electron microscopy of the cirrhotic liver. Liver. 1997 Aug;17(4):198–209. doi: 10.1111/j.1600-0676.1997.tb00806.x. [DOI] [PubMed] [Google Scholar]
  47. Thiele C., Gerdes H. H., Huttner W. B. Protein secretion: puzzling receptors. Curr Biol. 1997 Aug 1;7(8):R496–R500. doi: 10.1016/s0960-9822(06)00247-8. [DOI] [PubMed] [Google Scholar]
  48. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  49. Tooze S. A. Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):231–244. doi: 10.1016/S0167-4889(98)00059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Trowbridge I. S., Collawn J. F., Hopkins C. R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol. 1993;9:129–161. doi: 10.1146/annurev.cb.09.110193.001021. [DOI] [PubMed] [Google Scholar]
  52. Valls L. A., Winther J. R., Stevens T. H. Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. J Cell Biol. 1990 Aug;111(2):361–368. doi: 10.1083/jcb.111.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wandelt C. I., Khan M. R., Craig S., Schroeder H. E., Spencer D., Higgins T. J. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 1992 Mar;2(2):181–192. doi: 10.1046/j.1365-313x.1992.t01-41-00999.x. [DOI] [PubMed] [Google Scholar]
  54. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  55. da Silva Conceiço A., Marty-Mazars D., Bassham D. C., Sanderfoot A. A., Marty F., Raikhel N. V. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell. 1997 Apr;9(4):571–582. [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES