Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Apr;11(4):601–614. doi: 10.1105/tpc.11.4.601

Protein storage bodies and vacuoles

EM Herman 1, BA Larkins 1
PMCID: PMC144198  PMID: 10213781

Full Text

The Full Text of this article is available as a PDF (923.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. U., Bar-Peled M., Raikhel N. V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 1997 May;114(1):325–336. doi: 10.1104/pp.114.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschuler Y., Rosenberg N., Harel R., Galili G. The N- and C-terminal regions regulate the transport of wheat gamma-gliadin through the endoplasmic reticulum in Xenopus oocytes. Plant Cell. 1993 Apr;5(4):443–450. doi: 10.1105/tpc.5.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagga S., Adams H. P., Rodriguez F. D., Kemp J. D., Sengupta-Gopalan C. Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein. Plant Cell. 1997 Sep;9(9):1683–1696. doi: 10.1105/tpc.9.9.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagga S., Adams H., Kemp J. D., Sengupta-Gopalan C. Accumulation of 15-Kilodalton Zein in Novel Protein Bodies in Transgenic Tobacco. Plant Physiol. 1995 Jan;107(1):13–23. doi: 10.1104/pp.107.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Battey NH, James NC, Greenland AJ, Brownlee C. Exocytosis and endocytosis . Plant Cell. 1999 Apr;11(4):643–660. doi: 10.1105/tpc.11.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baumgartner B., Chrispeels M. J. Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem. 1977 Jul 15;77(2):223–233. doi: 10.1111/j.1432-1033.1977.tb11661.x. [DOI] [PubMed] [Google Scholar]
  7. Baumgartner B., Tokuyasu K. T., Chrispeels M. J. Localization of vicilin peptidohydrolase in the cotyledons of mung bean seedlings by immunofluorescence microscopy. J Cell Biol. 1978 Oct;79(1):10–19. doi: 10.1083/jcb.79.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bollini R., Vitale A., Chrispeels M. J. In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for two glycosylation steps. J Cell Biol. 1983 Apr;96(4):999–1007. doi: 10.1083/jcb.96.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boston R. S., Viitanen P. V., Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996 Oct;32(1-2):191–222. doi: 10.1007/BF00039383. [DOI] [PubMed] [Google Scholar]
  10. Bowles D. J., Marcus S. E., Pappin D. J., Findlay J. B., Eliopoulos E., Maycox P. R., Burgess J. Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J Cell Biol. 1986 Apr;102(4):1284–1297. doi: 10.1083/jcb.102.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carrington D. M., Auffret A., Hanke D. E. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature. 1985 Jan 3;313(5997):64–67. doi: 10.1038/313064a0. [DOI] [PubMed] [Google Scholar]
  12. Chappell J., Van der Wilden W., Chrispeels M. J. The biosynthesis of ribonuclease and its accumulation in protein bodies in the cotyledons of mung bean seedlings. Dev Biol. 1980 Apr;76(1):115–125. doi: 10.1016/0012-1606(80)90366-8. [DOI] [PubMed] [Google Scholar]
  13. Chrispeels M. J., Crawford N. M., Schroeder J. I. Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell. 1999 Apr;11(4):661–676. doi: 10.1105/tpc.11.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chrispeels M. J., Higgins T. J., Craig S., Spencer D. Role of the endoplasmic reticulum in the synthesis of reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J Cell Biol. 1982 Apr;93(1):5–14. doi: 10.1083/jcb.93.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chrispeels M. J., Higgins T. J., Spencer D. Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol. 1982 May;93(2):306–313. doi: 10.1083/jcb.93.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chrispeels M. J., Raikhel N. V. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991 Jan;3(1):1–9. doi: 10.1105/tpc.3.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chrispeels M. J., Raikhel N. V. Short peptide domains target proteins to plant vacuoles. Cell. 1992 Feb 21;68(4):613–616. doi: 10.1016/0092-8674(92)90134-x. [DOI] [PubMed] [Google Scholar]
  18. Coleman C. E., Clore A. M., Ranch J. P., Higgins R., Lopes M. A., Larkins B. A. Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7094–7097. doi: 10.1073/pnas.94.13.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Coleman C. E., Herman E. M., Takasaki K., Larkins B. A. The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell. 1996 Dec;8(12):2335–2345. doi: 10.1105/tpc.8.12.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cooper A. A., Stevens T. H. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol. 1996 May;133(3):529–541. doi: 10.1083/jcb.133.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DeWald D. B., Mason H. S., Mullet J. E. The soybean vegetative storage proteins VSP alpha and VSP beta are acid phosphatases active on polyphosphates. J Biol Chem. 1992 Aug 5;267(22):15958–15964. [PubMed] [Google Scholar]
  22. Dickinson C. D., Hussein E. H., Nielsen N. C. Role of posttranslational cleavage in glycinin assembly. Plant Cell. 1989 Apr;1(4):459–469. doi: 10.1105/tpc.1.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Galili G., Altschuler Y., Levanony H. Assembly and transport of seed storage proteins. Trends Cell Biol. 1993 Dec;3(12):437–442. doi: 10.1016/0962-8924(93)90033-w. [DOI] [PubMed] [Google Scholar]
  24. Geli M. I., Torrent M., Ludevid D. Two Structural Domains Mediate Two Sequential Events in [gamma]-Zein Targeting: Protein Endoplasmic Reticulum Retention and Protein Body Formation. Plant Cell. 1994 Dec;6(12):1911–1922. doi: 10.1105/tpc.6.12.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hankins C. N., Kindinger J. I., Shannon L. M. The Lectins of Sophora japonica: II. Purification, Properties, and N-Terminal Amino Acid Sequences of Five Lectins from Bark. Plant Physiol. 1988 Jan;86(1):67–70. doi: 10.1104/pp.86.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hankins C. N., Kindinger J., Shannon L. M. The Lectins of Sophora japonica: I. Purification Properties and N-Terminal Amino Acid Sequences of Two Lectins from Leaves. Plant Physiol. 1987 Apr;83(4):825–829. doi: 10.1104/pp.83.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hara-Hishimura I., Takeuchi Y., Inoue K., Nishimura M. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 1993 Nov;4(5):793–800. doi: 10.1046/j.1365-313x.1993.04050793.x. [DOI] [PubMed] [Google Scholar]
  28. Hara-Nishimura I., Nishimura M., Akazawa T. Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons. Plant Physiol. 1985 Mar;77(3):747–752. doi: 10.1104/pp.77.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hara-Nishimura I., Takeuchi Y., Nishimura M. Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell. 1993 Nov;5(11):1651–1659. doi: 10.1105/tpc.5.11.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles . Plant Cell. 1998 May;10(5):825–836. doi: 10.1105/tpc.10.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Harley S. M., Beevers L. Coated Vesicles Are Involved in the Transport of Storage Proteins during Seed Development in Pisum sativum L. Plant Physiol. 1989 Oct;91(2):674–678. doi: 10.1104/pp.91.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Herman E. M., Chrispeels M. J. Characteristics and subcellular localization of phospholipase d and phosphatidic Acid phosphatase in mung bean cotyledons. Plant Physiol. 1980 Nov;66(5):1001–1007. doi: 10.1104/pp.66.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Herman E. M., Hankins C. N., Shannon L. M. Bark and Leaf Lectins of Sophora japonica Are Sequestered in Protein-Storage Vacuoles. Plant Physiol. 1988 Apr;86(4):1027–1031. doi: 10.1104/pp.86.4.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Herman E. M., Shannon L. M. Accumulation and Subcellular Localization of alpha-Galactosidase-Hemagglutinin in Developing Soybean Cotyledons. Plant Physiol. 1985 Apr;77(4):886–890. doi: 10.1104/pp.77.4.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Higuchi W., Fukazawa C. A rice glutelin and a soybean glycinin have evolved from a common ancestral gene. Gene. 1987;55(2-3):245–253. doi: 10.1016/0378-1119(87)90284-8. [DOI] [PubMed] [Google Scholar]
  36. Hohl I., Robinson D. G., Chrispeels M. J., Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci. 1996 Oct;109(Pt 10):2539–2550. doi: 10.1242/jcs.109.10.2539. [DOI] [PubMed] [Google Scholar]
  37. Holwerda B. C., Padgett H. S., Rogers J. C. Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell. 1992 Mar;4(3):307–318. doi: 10.1105/tpc.4.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Horisberger M., Tacchini-Vonlanthen M. Ultrastructural localization of Bowman-Birk inhibitor on thin sections of Glycine max (soybean) cv. Maple Arrow by the gold method. Histochemistry. 1983;77(3):313–321. doi: 10.1007/BF00490894. [DOI] [PubMed] [Google Scholar]
  39. Inoue K., Motozaki A., Takeuchi Y., Nishimura M., Hara-Nishimura I. Molecular characterization of proteins in protein-body membrane that disappear most rapidly during transformation of protein bodies into vacuoles. Plant J. 1995 Feb;7(2):235–243. doi: 10.1046/j.1365-313x.1995.7020235.x. [DOI] [PubMed] [Google Scholar]
  40. Jauh G. Y., Fischer A. M., Grimes H. D., Ryan C. A., Jr, Rogers J. C. delta-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12995–12999. doi: 10.1073/pnas.95.22.12995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ji C., Boyd C., Slaymaker D., Okinaka Y., Takeuchi Y., Midland S. L., Sims J. J., Herman E., Keen N. Characterization of a 34-kDa soybean binding protein for the syringolide elicitors. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3306–3311. doi: 10.1073/pnas.95.6.3306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Johnson K. D., Chrispeels M. J. Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein. Plant Physiol. 1992 Dec;100(4):1787–1795. doi: 10.1104/pp.100.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Johnson K. D., Herman E. M., Chrispeels M. J. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 1989 Nov;91(3):1006–1013. doi: 10.1104/pp.91.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Johnson K. D., Höfte H., Chrispeels M. J. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF). Plant Cell. 1990 Jun;2(6):525–532. doi: 10.1105/tpc.2.6.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Jung R., Scott M. P., Nam Y. W., Beaman T. W., Bassüner R., Saalbach I., Müntz K., Nielsen N. C. The role of proteolysis in the processing and assembly of 11S seed globulins. Plant Cell. 1998 Mar;10(3):343–357. doi: 10.1105/tpc.10.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kalinski A., Melroy D. L., Dwivedi R. S., Herman E. M. A soybean vacuolar protein (P34) related to thiol proteases is synthesized as a glycoprotein precursor during seed maturation. J Biol Chem. 1992 Jun 15;267(17):12068–12076. [PubMed] [Google Scholar]
  47. Kusumi A., Subczynski W. K., Pasenkiewicz-Gierula M., Hyde J. S., Merkle H. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim Biophys Acta. 1986 Jan 29;854(2):307–317. doi: 10.1016/0005-2736(86)90124-0. [DOI] [PubMed] [Google Scholar]
  48. Larkins B. A., Hurkman W. J. Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol. 1978 Aug;62(2):256–263. doi: 10.1104/pp.62.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lawrence M. C., Izard T., Beuchat M., Blagrove R. J., Colman P. M. Structure of phaseolin at 2.2 A resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol. 1994 May 20;238(5):748–776. doi: 10.1006/jmbi.1994.1333. [DOI] [PubMed] [Google Scholar]
  50. Lending C. R., Larkins B. A. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell. 1989 Oct;1(10):1011–1023. doi: 10.1105/tpc.1.10.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Levanony H., Rubin R., Altschuler Y., Galili G. Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol. 1992 Dec;119(5):1117–1128. doi: 10.1083/jcb.119.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Li C. P., Larkins B. A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol. 1996 Mar;30(5):873–882. doi: 10.1007/BF00020800. [DOI] [PubMed] [Google Scholar]
  53. Li X., Franceschi V. R., Okita T. W. Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell. 1993 Mar 26;72(6):869–879. doi: 10.1016/0092-8674(93)90576-c. [DOI] [PubMed] [Google Scholar]
  54. Li X., Wu Y., Zhang D. Z., Gillikin J. W., Boston R. S., Franceschi V. R., Okita T. W. Rice prolamine protein body biogenesis: a BiP-mediated process. Science. 1993 Nov 12;262(5136):1054–1056. doi: 10.1126/science.8235623. [DOI] [PubMed] [Google Scholar]
  55. Maeshima M., Hara-Nishimura I., Takeuchi Y., Nishimura M. Accumulation of Vacuolar H+-Pyrophosphatase and H+-ATPase during Reformation of the Central Vacuole in Germinating Pumpkin Seeds. Plant Physiol. 1994 Sep;106(1):61–69. doi: 10.1104/pp.106.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Marty F. Plant vacuoles . Plant Cell. 1999 Apr;11(4):587–600. doi: 10.1105/tpc.11.4.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Matsuoka K., Watanabe N., Nakamura K. O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J. 1995 Dec;8(6):877–889. doi: 10.1046/j.1365-313x.1995.8060877.x. [DOI] [PubMed] [Google Scholar]
  58. Maurel C., Kado R. T., Guern J., Chrispeels M. J. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. EMBO J. 1995 Jul 3;14(13):3028–3035. doi: 10.1002/j.1460-2075.1995.tb07305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Maurel Christophe. AQUAPORINS AND WATER PERMEABILITY OF PLANT MEMBRANES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):399–429. doi: 10.1146/annurev.arplant.48.1.399. [DOI] [PubMed] [Google Scholar]
  60. Mettler I. J., Beevers H. Isolation and characterization of the protein body membrane of castor beans. Plant Physiol. 1979 Sep;64(3):506–511. doi: 10.1104/pp.64.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Nam Y. W., Jung R., Nielsen N. C. Adenosine 5'-triphosphate is required for the assembly of 11S seed proglobulins in vitro. Plant Physiol. 1997 Dec;115(4):1629–1639. doi: 10.1104/pp.115.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Napier J. A., Richard G., Turner M. F., Shewry P. R. Trafficking of wheat gluten proteins in transgenic tobacco plants: gamma-gliadin does not contain an endoplasmic reticulum-retention signal. Planta. 1997 Dec;203(4):488–494. doi: 10.1007/s004250050218. [DOI] [PubMed] [Google Scholar]
  63. Neuhaus J. M., Sticher L., Meins F., Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10362–10366. doi: 10.1073/pnas.88.22.10362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Nishimura M., Beevers H. Hydrolases in vacuoles from castor bean endosperm. Plant Physiol. 1978 Jul;62(1):44–48. doi: 10.1104/pp.62.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Nsimba-Lubaki M., Peumans W. J. Seasonal Fluctuations of Lectins in Barks of Elderberry (Sambucus nigra) and Black Locust (Robinia pseudoacacia). Plant Physiol. 1986 Mar;80(3):747–751. doi: 10.1104/pp.80.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Paris N., Rogers S. W., Jiang L., Kirsch T., Beevers L., Phillips T. E., Rogers J. C. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 1997 Sep;115(1):29–39. doi: 10.1104/pp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Paris N., Stanley C. M., Jones R. L., Rogers J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996 May 17;85(4):563–572. doi: 10.1016/s0092-8674(00)81256-8. [DOI] [PubMed] [Google Scholar]
  68. Pueyo J. J., Chrispeels M. J., Herman E. M. Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole. Planta. 1995;196(3):586–596. doi: 10.1007/BF00203660. [DOI] [PubMed] [Google Scholar]
  69. Rechinger K. B., Simpson D. J., Svendsen I., Cameron-Mills V. A role for gamma 3 hordein in the transport and targeting of prolamin polypeptides to the vacuole of developing barley endosperm. Plant J. 1993 Nov;4(5):841–853. doi: 10.1046/j.1365-313x.1993.04050841.x. [DOI] [PubMed] [Google Scholar]
  70. Rings E. H., Büller H. A., Neele A. M., Dekker J. Protein sorting versus messenger RNA sorting? Eur J Cell Biol. 1994 Apr;63(2):161–171. [PubMed] [Google Scholar]
  71. Rubin R., Levanony H., Galili G. Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiol. 1992 Jun;99(2):718–724. doi: 10.1104/pp.99.2.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Sanderfoot A. A., Raikhel N. V. The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell. 1999 Apr;11(4):629–642. doi: 10.1105/tpc.11.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Shewry P. R., Napier J. A., Tatham A. S. Seed storage proteins: structures and biosynthesis. Plant Cell. 1995 Jul;7(7):945–956. doi: 10.1105/tpc.7.7.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Shimoni Y., Galili G. Intramolecular disulfide bonds between conserved cysteines in wheat gliadins control their deposition into protein bodies. J Biol Chem. 1996 Aug 2;271(31):18869–18874. doi: 10.1074/jbc.271.31.18869. [DOI] [PubMed] [Google Scholar]
  75. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  76. Staehelin L. A. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 1997 Jun;11(6):1151–1165. doi: 10.1046/j.1365-313x.1997.11061151.x. [DOI] [PubMed] [Google Scholar]
  77. Staswick P. E. Developmental regulation and the influence of plant sinks on vegetative storage protein gene expression in soybean leaves. Plant Physiol. 1989 Jan;89(1):309–315. doi: 10.1104/pp.89.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Sze H, Li X, Palmgren MG. Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis . Plant Cell. 1999 Apr;11(4):677–690. doi: 10.1105/tpc.11.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Taylor-Robinson S. D., Sargentoni J., Bell J. D., Saeed N., Changani K. K., Davidson B. R., Rolles K., Burroughs A. K., Hodgson H. J., Foster C. S. In vivo and in vitro hepatic 31P magnetic resonance spectroscopy and electron microscopy of the cirrhotic liver. Liver. 1997 Aug;17(4):198–209. doi: 10.1111/j.1600-0676.1997.tb00806.x. [DOI] [PubMed] [Google Scholar]
  80. Thomas T. L. Gene expression during plant embryogenesis and germination: an overview. Plant Cell. 1993 Oct;5(10):1401–1410. doi: 10.1105/tpc.5.10.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Tranbarger T. J., Franceschi V. R., Hildebrand D. F., Grimes H. D. The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell. 1991 Sep;3(9):973–987. doi: 10.1105/tpc.3.9.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Van der Wilden W., Herman E. M., Chrispeels M. J. Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci U S A. 1980 Jan;77(1):428–432. doi: 10.1073/pnas.77.1.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Vitale A., Chrispeels M. J. Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol. 1984 Jul;99(1 Pt 1):133–140. doi: 10.1083/jcb.99.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Vitale A, Denecke J. The endoplasmic reticulum-gateway of the secretory pathway . Plant Cell. 1999 Apr;11(4):615–628. doi: 10.1105/tpc.11.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Wilkins T. A., Bednarek S. Y., Raikhel N. V. Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell. 1990 Apr;2(4):301–313. doi: 10.1105/tpc.2.4.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Williamson J. D., Galili G., Larkins B. A., Gelvin S. B. The synthesis of a 19 kilodalton zein protein in transgenic petunia plants. Plant Physiol. 1988 Dec;88(4):1002–1007. doi: 10.1104/pp.88.4.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES