Skip to main content
RNA logoLink to RNA
. 1999 May;5(5):670–677. doi: 10.1017/s1355838299982304

Crystal structure of acceptor stem of tRNA(Ala) from Escherichia coli shows unique G.U wobble base pair at 1.16 A resolution.

U Mueller 1, H Schübel 1, M Sprinzl 1, U Heinemann 1
PMCID: PMC1369794  PMID: 10334337

Abstract

The acceptor stem of Escherichia coli tRNA(Ala), rGGGGCUA.rUAGCUCC (ALAwt), contains the main identity element for the correct aminoacylation by the alanyl tRNA synthetase. The presence of a G3.U70 wobble base pair is essential for the specificity of this reaction, but there is a debate whether direct minor-groove contact with the 2-amino group of G3 or a distortion of the acceptor stem induced by the wobble pair is the critical feature recognized by the synthetase. We here report the structure analysis of ALAwt at near-atomic resolution using twinned crystals. The crystal lattice is stabilized by a novel strontium binding motif between two cis-diolic O3'-terminal riboses. The two independent molecules in the asymmetric unit of the crystal show overall A-RNA geometry. A comparison with the crystal structure of the G3-C70 mutant of the acceptor stem (ALA(C70)) determined at 1.4 A exhibits a modulation in ALAwt of helical twist and slide due to the wobble base pair, but no recognizable distortion of the helix fragment distant from the wobble base pair. We suggest that a highly conserved hydration pattern in both grooves around the G3.U70 wobble base pair may be functionally significant.

Full Text

The Full Text of this article is available as a PDF (423.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnez J. G., Moras D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci. 1997 Jun;22(6):211–216. doi: 10.1016/s0968-0004(97)01052-9. [DOI] [PubMed] [Google Scholar]
  2. Berger I., Kang C. H., Sinha N., Wolters M., Rich A. A highly efficient 24-condition matrix for the crystallization of nucleic acid fragments. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):465–468. doi: 10.1107/s0907444995013564. [DOI] [PubMed] [Google Scholar]
  3. Beuning P. J., Yang F., Schimmel P., Musier-Forsyth K. Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10150–10154. doi: 10.1073/pnas.94.19.10150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biswas R., Wahl M. C., Ban C., Sundaralingam M. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs. J Mol Biol. 1997 Apr 18;267(5):1149–1156. doi: 10.1006/jmbi.1997.0936. [DOI] [PubMed] [Google Scholar]
  5. Celander D. W., Cech T. R. Visualizing the higher order folding of a catalytic RNA molecule. Science. 1991 Jan 25;251(4992):401–407. doi: 10.1126/science.1989074. [DOI] [PubMed] [Google Scholar]
  6. Chihade J. W., Hayashibara K., Shiba K., Schimmel P. Strong selective pressure to use G:U to mark an RNA acceptor stem for alanine. Biochemistry. 1998 Jun 23;37(25):9193–9202. doi: 10.1021/bi9804636. [DOI] [PubMed] [Google Scholar]
  7. Chowrira B. M., Berzal-Herranz A., Burke J. M. Ionic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme. Biochemistry. 1993 Feb 2;32(4):1088–1095. doi: 10.1021/bi00055a014. [DOI] [PubMed] [Google Scholar]
  8. Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
  9. Francklyn C., Schimmel P. Aminoacylation of RNA minihelices with alanine. Nature. 1989 Feb 2;337(6206):478–481. doi: 10.1038/337478a0. [DOI] [PubMed] [Google Scholar]
  10. Gabriel K., Schneider J., McClain W. H. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase. Science. 1996 Jan 12;271(5246):195–197. doi: 10.1126/science.271.5246.195. [DOI] [PubMed] [Google Scholar]
  11. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  12. Kleywegt G. J., Jones T. A. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):826–828. doi: 10.1107/S0907444995014983. [DOI] [PubMed] [Google Scholar]
  13. Kleywegt G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842–857. doi: 10.1107/S0907444995016477. [DOI] [PubMed] [Google Scholar]
  14. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  15. Limmer S., Reif B., Ott G., Arnold L., Sprinzl M. NMR evidence for helix geometry modifications by a G-U wobble base pair in the acceptor arm of E. coli tRNA(Ala). FEBS Lett. 1996 Apr 29;385(1-2):15–20. doi: 10.1016/0014-5793(96)00339-0. [DOI] [PubMed] [Google Scholar]
  16. McClain W. H., Chen Y. M., Foss K., Schneider J. Association of transfer RNA acceptor identity with a helical irregularity. Science. 1988 Dec 23;242(4886):1681–1684. doi: 10.1126/science.2462282. [DOI] [PubMed] [Google Scholar]
  17. McClain W. H., Foss K. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science. 1988 May 6;240(4853):793–796. doi: 10.1126/science.2452483. [DOI] [PubMed] [Google Scholar]
  18. McClain W. H., Gabriel K., Schneider J. Specific function of a G.U wobble pair from an adjacent helical site in tRNA(Ala) during recognition by alanyl-tRNA synthetase. RNA. 1996 Feb;2(2):105–109. [PMC free article] [PubMed] [Google Scholar]
  19. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  20. Moews P. C., Kretsinger R. H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J Mol Biol. 1975 Jan 15;91(2):201–225. doi: 10.1016/0022-2836(75)90160-6. [DOI] [PubMed] [Google Scholar]
  21. Musier-Forsyth K., Usman N., Scaringe S., Doudna J., Green R., Schimmel P. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science. 1991 Aug 16;253(5021):784–786. doi: 10.1126/science.1876835. [DOI] [PubMed] [Google Scholar]
  22. Ott G., Dörfler S., Sprinzl M., Müller U., Heinemann U. Crystals of the chemically synthesized acceptor stem of tRNAAla from Escherichia coli diffracting to high resolution. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):871–873. doi: 10.1107/S0907444996000455. [DOI] [PubMed] [Google Scholar]
  23. Park S. J., Schimmel P. Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA. J Biol Chem. 1988 Nov 15;263(32):16527–16530. [PubMed] [Google Scholar]
  24. Ramos A., Varani G. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition. Nucleic Acids Res. 1997 Jun 1;25(11):2083–2090. doi: 10.1093/nar/25.11.2083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saks M. E., Sampson J. R. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNA(Ser) acceptor stem by E.coli seryl-tRNA synthetase. EMBO J. 1996 Jun 3;15(11):2843–2849. [PMC free article] [PubMed] [Google Scholar]
  26. Schimmel P., Giegé R., Moras D., Yokoyama S. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763–8768. doi: 10.1073/pnas.90.19.8763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shiba K., Ripmaster T., Suzuki N., Nichols R., Plotz P., Noda T., Schimmel P. Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry. 1995 Aug 22;34(33):10340–10349. doi: 10.1021/bi00033a004. [DOI] [PubMed] [Google Scholar]
  28. Streicher B., Westhof E., Schroeder R. The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. 1996 May 15;15(10):2556–2564. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES