Full text
PDF![127](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/ef364385a8bf/jphysiol01296-0156.png)
![128](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/6a00a79eec0b/jphysiol01296-0157.png)
![129](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/83b83f1f7d72/jphysiol01296-0158.png)
![130](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/7cfef928b608/jphysiol01296-0159.png)
![131](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/cfd297f682f5/jphysiol01296-0160.png)
![132](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/e1345e2fc787/jphysiol01296-0161.png)
![133](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/a202d32337d0/jphysiol01296-0162.png)
![134](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/0234b4eddac4/jphysiol01296-0163.png)
![135](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/07c5524bcdf0/jphysiol01296-0164.png)
![136](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/345b9c39a1c7/jphysiol01296-0165.png)
![137](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/2cece849563a/jphysiol01296-0166.png)
![138](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/d21ae40583ef/jphysiol01296-0167.png)
![139](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/634baca96505/jphysiol01296-0168.png)
![140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/34e3e9e03443/jphysiol01296-0169.png)
![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/a6d27f3fb685/jphysiol01296-0170.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/523c8b58d6b6/jphysiol01296-0171.png)
![143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/96e773f57480/jphysiol01296-0172.png)
![144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/8c4c65e4d507/jphysiol01296-0173.png)
![145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/e93af12d4726/jphysiol01296-0174.png)
![146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/92e72b376818/jphysiol01296-0175.png)
![147](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/acf787927156/jphysiol01296-0176.png)
![148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/4ff13d791be9/jphysiol01296-0177.png)
![149](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/f034e0b51ba4/jphysiol01296-0178.png)
![150](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/be3beb445d52/jphysiol01296-0179.png)
![151](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/a2ddb7ecb582/jphysiol01296-0180.png)
![152](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/cc27444f68bb/jphysiol01296-0181.png)
![153](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/4dd39a234213/jphysiol01296-0182.png)
![154](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/3e7aeb40ae7b/jphysiol01296-0183.png)
![155](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/55a17080af81/jphysiol01296-0184.png)
![156](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/cad7ece4cf2d/jphysiol01296-0185.png)
![157](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/63ab7985ab8d/jphysiol01296-0186.png)
![158](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/35c5cba692a6/jphysiol01296-0187.png)
![159](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/6bbc0be0f509/jphysiol01296-0188.png)
![160](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a56/1363113/20326347dfb1/jphysiol01296-0189.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRINK F. The role of calcium ions in neural processes. Pharmacol Rev. 1954 Sep;6(3):243–298. [PubMed] [Google Scholar]
- Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol Rev. 1957 Jan;37(1):84–132. doi: 10.1152/physrev.1957.37.1.84. [DOI] [PubMed] [Google Scholar]
- CSAPO A., WILKIE D. R. The dynamics of the effect of potassium on frog's muscle. J Physiol. 1956 Dec 28;134(3):497–514. doi: 10.1113/jphysiol.1956.sp005660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDWARDS C., HARRIS E. J., NISHIE K. The exchange of frog muscle Na+ and K+ in the presence of the anions Br-, NO3-, I- and CNS-. J Physiol. 1957 Mar 11;135(3):560–566. doi: 10.1113/jphysiol.1957.sp005730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIEBISCH G., KRAUPP O., PILLAT B., STORMANN H. Der Ersatz von extracellulärem Natriumchlorid durch Natriumsulfat bzw. Saccharose und seine Wirkung auf die isoliert durchströmte Saugetiermuskulatur. Pflugers Arch. 1957;265(3):220–236. doi: 10.1007/BF00595649. [DOI] [PubMed] [Google Scholar]
- HARRIS E. J. Anion interaction in frog muscle. J Physiol. 1958 Apr 30;141(2):351–365. doi: 10.1113/jphysiol.1958.sp005979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILL A. V., HOWARTH J. V. The effect of potassium on the resting metabolism of the frog's sartorius. Proc R Soc Lond B Biol Sci. 1957 Aug 24;147(926):21–43. doi: 10.1098/rspb.1957.0034. [DOI] [PubMed] [Google Scholar]
- HILL A. V., MACPHERSON L. The effect of nitrate, iodide and bromide on the duration of the active state in skeletal muscle. Proc R Soc Lond B Biol Sci. 1954 Dec 15;143(910):81–102. doi: 10.1098/rspb.1954.0055. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Effects of K and Cl on the membrane potential of isolated muscle fibres. J Physiol. 1957 Jun 18;137(1):30P–30P. [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., PADSHA S. M. Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle. J Physiol. 1959 Apr 23;146(1):117–132. doi: 10.1113/jphysiol.1959.sp006182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JENERICK H. P. Muscle membrane potential, resistance, and external potassium chloride. J Cell Physiol. 1953 Dec;42(3):427–448. doi: 10.1002/jcp.1030420309. [DOI] [PubMed] [Google Scholar]
- PILLAT B., KRAUPP O., GIEBISCH G., STORMANN H. Die Abhängigkeit des elektrischen Ruhepotentials des isoliert durchströmten Säugetiermuskels von der extracellulären Kaliumkonzentration. Pflugers Arch. 1958;266(5):459–472. doi: 10.1007/BF00362250. [DOI] [PubMed] [Google Scholar]
- SANDOW A., MANDEL H. Effects of potassium and rubidium on the resting potential of muscle. J Cell Physiol. 1951 Oct;38(2):271–291. doi: 10.1002/jcp.1030380210. [DOI] [PubMed] [Google Scholar]