Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):843–856. doi: 10.1016/S0006-3495(98)74008-1

Electrical properties of skin at moderate voltages: contribution of appendageal macropores.

Y A Chizmadzhev 1, A V Indenbom 1, P I Kuzmin 1, S V Galichenko 1, J C Weaver 1, R O Potts 1
PMCID: PMC1302564  PMID: 9533696

Abstract

The electrical properties of human skin in the range of the applied voltages between 0.2 and 60 V are modeled theoretically and measured experimentally. Two parallel electric current pathways are considered: one crossing lipid-corneocyte matrix and the other going through skin appendages. The appendageal ducts are modeled as long tubes with distributed electrical parameters. For both transport systems, equations taking into account the electroporation of lipid lamella in the case the lipid-corneocyte matrix or the walls of the appendageal ducts in the case of the skin appendages are derived. Numerical solutions of these nonlinear equations are compared with published data and the results of our own experiments. The current-time response of the skin during the application of rectangular pulses of different voltage amplitudes show a profound similarity with the same characteristics in model and plasma membrane electroporation. A comparison of the theory and the experiment shows that a significant (up to three orders of magnitude) drop of skin resistance due to electrotreatment can be explained by electroporation of different substructures of stratum corneum. At relatively low voltages (U < 30 V) this drop of skin resistance can be attributed to electroporation of the appendageal ducts. At higher voltages (U > 30 V), electroporation of the lipid-corneocyte matrix leads to an additional drop of skin resistance. These theoretical findings are in a good agreement with the experimental results and literature data.

Full Text

The Full Text of this article is available as a PDF (210.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R., Beckers F., Zimmermann U. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol. 1979 Jul 16;48(2):181–204. doi: 10.1007/BF01872858. [DOI] [PubMed] [Google Scholar]
  2. Bommannan D. B., Tamada J., Leung L., Potts R. O. Effect of electroporation on transdermal iontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm Res. 1994 Dec;11(12):1809–1814. doi: 10.1023/a:1018983804635. [DOI] [PubMed] [Google Scholar]
  3. Chernomordik L. V., Sukharev S. I., Popov S. V., Pastushenko V. F., Sokirko A. V., Abidor I. G., Chizmadzhev Y. A. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta. 1987 Sep 3;902(3):360–373. doi: 10.1016/0005-2736(87)90204-5. [DOI] [PubMed] [Google Scholar]
  4. Chizmadzhev Y. A., Zarnitsin V. G., Weaver J. C., Potts R. O. Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophys J. 1995 Mar;68(3):749–765. doi: 10.1016/S0006-3495(95)80250-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cullander C., Guy R. H. Sites of iontophoretic current flow into the skin: identification and characterization with the vibrating probe electrode. J Invest Dermatol. 1991 Jul;97(1):55–64. doi: 10.1111/1523-1747.ep12478060. [DOI] [PubMed] [Google Scholar]
  6. Elias P. M. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol. 1983 Jun;80 (Suppl):44s–49s. [PubMed] [Google Scholar]
  7. Elias P. M., McNutt N. S., Friend D. S. Membrane alterations during cornification of mammalian squamous epithelia: a freeze-fracture, tracer, and thin-section study. Anat Rec. 1977 Dec;189(4):577–594. doi: 10.1002/ar.1091890404. [DOI] [PubMed] [Google Scholar]
  8. Glaser R. W., Leikin S. L., Chernomordik L. V., Pastushenko V. F., Sokirko A. I. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta. 1988 May 24;940(2):275–287. doi: 10.1016/0005-2736(88)90202-7. [DOI] [PubMed] [Google Scholar]
  9. Holbrook K. A., Odland G. F. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Invest Dermatol. 1974 Apr;62(4):415–422. doi: 10.1111/1523-1747.ep12701670. [DOI] [PubMed] [Google Scholar]
  10. Inada H., Ghanem A. H., Higuchi W. I. Studies on the effects of applied voltage and duration on human epidermal membrane alteration/recovery and the resultant effects upon iontophoresis. Pharm Res. 1994 May;11(5):687–697. doi: 10.1023/a:1018924228916. [DOI] [PubMed] [Google Scholar]
  11. Kasting G. B., Bowman L. A. DC electrical properties of frozen, excised human skin. Pharm Res. 1990 Feb;7(2):134–143. doi: 10.1023/a:1015820600672. [DOI] [PubMed] [Google Scholar]
  12. Kasting G. B., Bowman L. A. Electrical analysis of fresh, excised human skin: a comparison with frozen skin. Pharm Res. 1990 Nov;7(11):1141–1146. doi: 10.1023/a:1015928225089. [DOI] [PubMed] [Google Scholar]
  13. Kuzmin P. I., Darmostuk A. S., Chizmadzhev Y. A., White H. S., Potts R. O. A mechanism of skin appendage macropores electroactivation during iontophoresis. Membr Cell Biol. 1997;10(6):699–706. [PubMed] [Google Scholar]
  14. Madison K. C., Swartzendruber D. C., Wertz P. W., Downing D. T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol. 1987 Jun;88(6):714–718. doi: 10.1111/1523-1747.ep12470386. [DOI] [PubMed] [Google Scholar]
  15. Monteiro-Riviere N. A., Inman A. O., Riviere J. E. Identification of the pathway of iontophoretic drug delivery: light and ultrastructural studies using mercuric chloride in pigs. Pharm Res. 1994 Feb;11(2):251–256. doi: 10.1023/a:1018907508501. [DOI] [PubMed] [Google Scholar]
  16. Pliquett U. F., Zewert T. E., Chen T., Langer R., Weaver J. C. Imaging of fluorescent molecule and small ion transport through human stratum corneum during high voltage pulsing: localized transport regions are involved. Biophys Chem. 1996 Jan 16;58(1-2):185–204. doi: 10.1016/0301-4622(95)00098-4. [DOI] [PubMed] [Google Scholar]
  17. Pliquett U., Langer R., Weaver J. C. Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim Biophys Acta. 1995 Nov 1;1239(2):111–121. doi: 10.1016/0005-2736(95)00139-t. [DOI] [PubMed] [Google Scholar]
  18. Prausnitz M. R., Bose V. G., Langer R., Weaver J. C. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10504–10508. doi: 10.1073/pnas.90.22.10504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scheuplein R. J. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol. 1967 Jan;48(1):79–88. [PubMed] [Google Scholar]
  20. Scott E. R., Laplaza A. I., White H. S., Phipps J. B. Transport of ionic species in skin: contribution of pores to the overall skin conductance. Pharm Res. 1993 Dec;10(12):1699–1709. doi: 10.1023/a:1018909811672. [DOI] [PubMed] [Google Scholar]
  21. Swartzendruber D. C., Wertz P. W., Kitko D. J., Madison K. C., Downing D. T. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J Invest Dermatol. 1989 Feb;92(2):251–257. doi: 10.1111/1523-1747.ep12276794. [DOI] [PubMed] [Google Scholar]
  22. Swartzendruber D. C., Wertz P. W., Madison K. C., Downing D. T. Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol. 1987 Jun;88(6):709–713. doi: 10.1111/1523-1747.ep12470383. [DOI] [PubMed] [Google Scholar]
  23. Tsong T. Y. Electroporation of cell membranes. Biophys J. 1991 Aug;60(2):297–306. doi: 10.1016/S0006-3495(91)82054-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zewert T. E., Pliquett U. F., Langer R., Weaver J. C. Transdermal transport of DNA antisense oligonucleotides by electroporation. Biochem Biophys Res Commun. 1995 Jul 17;212(2):286–292. doi: 10.1006/bbrc.1995.1968. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES