Abstract
Calculation of the centroid of the images of individual fluorescent particles and molecules allows localization and tracking in light microscopes to a precision about an order of magnitude greater than the microscope resolution. The factors that limit the precision of these techniques are examined and a simple equation derived that describes the precision of localization over a wide range of conditions. In addition, a localization algorithm motivated from least-squares fitting theory is constructed and tested both on image stacks of 30-nm fluorescent beads and on computer-generated images (Monte Carlo simulations). Results from the algorithm show good agreement with the derived precision equation for both the simulations and actual images. The availability of a simple equation to describe localization precision helps investigators both in assessing the quality of an experimental apparatus and in directing attention to the factors that limit further improvement. The precision of localization scales as the inverse square root of the number of photons in the spot for the shot noise limited case and as the inverse of the number of photons for the background noise limited case. The optimal image magnification depends on the expected number of photons and background noise, but, for most cases of interest, the pixel size should be about equal to the standard deviation of the point spread function.
Full Text
The Full Text of this article is available as a PDF (122.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barak L. S., Webb W. W. Diffusion of low density lipoprotein-receptor complex on human fibroblasts. J Cell Biol. 1982 Dec;95(3):846–852. doi: 10.1083/jcb.95.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barak L. S., Webb W. W. Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J Cell Biol. 1981 Sep;90(3):595–604. doi: 10.1083/jcb.90.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown E. B., Wu E. S., Zipfel W., Webb W. W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J. 1999 Nov;77(5):2837–2849. doi: 10.1016/S0006-3495(99)77115-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheezum M. K., Walker W. F., Guilford W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J. 2001 Oct;81(4):2378–2388. doi: 10.1016/S0006-3495(01)75884-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherry R. J., Smith P. R., Morrison I. E., Fernandez N. Mobility of cell surface receptors: a re-evaluation. FEBS Lett. 1998 Jun 23;430(1-2):88–91. doi: 10.1016/s0014-5793(98)00595-x. [DOI] [PubMed] [Google Scholar]
- Denk W., Webb W. W., Hudspeth A. J. Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5371–5375. doi: 10.1073/pnas.86.14.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edidin M., Kuo S. C., Sheetz M. P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science. 1991 Nov 29;254(5036):1379–1382. doi: 10.1126/science.1835798. [DOI] [PubMed] [Google Scholar]
- Feder T. J., Brust-Mascher I., Slattery J. P., Baird B., Webb W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J. 1996 Jun;70(6):2767–2773. doi: 10.1016/S0006-3495(96)79846-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geerts H., De Brabander M., Nuydens R., Geuens S., Moeremans M., De Mey J., Hollenbeck P. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys J. 1987 Nov;52(5):775–782. doi: 10.1016/S0006-3495(87)83271-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
- Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goulian M., Simon S. M. Tracking single proteins within cells. Biophys J. 2000 Oct;79(4):2188–2198. doi: 10.1016/S0006-3495(00)76467-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross D., Webb W. W. Molecular counting of low-density lipoprotein particles as individuals and small clusters on cell surfaces. Biophys J. 1986 Apr;49(4):901–911. doi: 10.1016/S0006-3495(86)83718-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao H. P., Verkman A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J. 1994 Sep;67(3):1291–1300. doi: 10.1016/S0006-3495(94)80601-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubitscheck U., Kues T., Peters R. Visualization of nuclear pore complex and its distribution by confocal laser scanning microscopy. Methods Enzymol. 1999;307:207–230. doi: 10.1016/s0076-6879(99)07015-9. [DOI] [PubMed] [Google Scholar]
- Kubitscheck U., Kückmann O., Kues T., Peters R. Imaging and tracking of single GFP molecules in solution. Biophys J. 2000 Apr;78(4):2170–2179. doi: 10.1016/S0006-3495(00)76764-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters I. M., van Kooyk Y., van Vliet S. J., de Grooth B. G., Figdor C. G., Greve J. 3D single-particle tracking and optical trap measurements on adhesion proteins. Cytometry. 1999 Jul 1;36(3):189–194. doi: 10.1002/(sici)1097-0320(19990701)36:3<189::aid-cyto7>3.3.co;2-v. [DOI] [PubMed] [Google Scholar]
- Sako Y., Nagafuchi A., Tsukita S., Takeichi M., Kusumi A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol. 1998 Mar 9;140(5):1227–1240. doi: 10.1083/jcb.140.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
- Schmidt T., Schütz G. J., Baumgartner W., Gruber H. J., Schindler H. Imaging of single molecule diffusion. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2926–2929. doi: 10.1073/pnas.93.7.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwille P., Korlach J., Webb W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry. 1999 Jul 1;36(3):176–182. doi: 10.1002/(sici)1097-0320(19990701)36:3<176::aid-cyto5>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
- Schütz G. J., Schindler H., Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J. 1997 Aug;73(2):1073–1080. doi: 10.1016/S0006-3495(97)78139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheets E. D., Lee G. M., Simson R., Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 1997 Oct 14;36(41):12449–12458. doi: 10.1021/bi9710939. [DOI] [PubMed] [Google Scholar]
- Smith P. R., Morrison I. E., Wilson K. M., Fernández N., Cherry R. J. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J. 1999 Jun;76(6):3331–3344. doi: 10.1016/S0006-3495(99)77486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
- Tomishige M., Sako Y., Kusumi A. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol. 1998 Aug 24;142(4):989–1000. doi: 10.1083/jcb.142.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang M. D. Manipulation of single molecules in biology. Curr Opin Biotechnol. 1999 Feb;10(1):81–86. doi: 10.1016/s0958-1669(99)80015-9. [DOI] [PubMed] [Google Scholar]
- Williams R. M., Piston D. W., Webb W. W. Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 1994 Aug;8(11):804–813. doi: 10.1096/fasebj.8.11.8070629. [DOI] [PubMed] [Google Scholar]