Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):1096–1111. doi: 10.1016/S0006-3495(02)75469-6

Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems.

Peter Schuck 1, Matthew A Perugini 1, Noreen R Gonzales 1, Geoffrey J Howlett 1, Dieter Schubert 1
PMCID: PMC1301916  PMID: 11806949

Abstract

Strategies for the deconvolution of diffusion in the determination of size-distributions from sedimentation velocity experiments were examined and developed. On the basis of four different model systems, we studied the differential apparent sedimentation coefficient distributions by the time-derivative method, g(s*), and by least-squares direct boundary modeling, ls-g*(s), the integral sedimentation coefficient distribution by the van Holde-Weischet method, G(s), and the previously introduced differential distribution of Lamm equation solutions, c(s). It is shown that the least-squares approach ls-g*(s) can be extrapolated to infinite time by considering area divisions analogous to boundary divisions in the van Holde-Weischet method, thus allowing the transformation of interference optical data into an integral sedimentation coefficient distribution G(s). However, despite the model-free approach of G(s), for the systems considered, the direct boundary modeling with a distribution of Lamm equation solutions c(s) exhibited the highest resolution and sensitivity. The c(s) approach requires an estimate for the size-dependent diffusion coefficients D(s), which is usually incorporated in the form of a weight-average frictional ratio of all species, or in the form of prior knowledge of the molar mass of the main species. We studied the influence of the weight-average frictional ratio on the quality of the fit, and found that it is well-determined by the data. As a direct boundary model, the calculated c(s) distribution can be combined with a nonlinear regression to optimize distribution parameters, such as the exact meniscus position, and the weight-average frictional ratio. Although c(s) is computationally the most complex, it has the potential for the highest resolution and sensitivity of the methods described.

Full Text

The Full Text of this article is available as a PDF (355.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Claverie J. M., Dreux H., Cohen R. Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations. Biopolymers. 1975 Aug;14(8):1685–1700. doi: 10.1002/bip.1975.360140811. [DOI] [PubMed] [Google Scholar]
  2. Cole J. L., Garsky V. M. Thermodynamics of peptide inhibitor binding to HIV-1 gp41. Biochemistry. 2001 May 15;40(19):5633–5641. doi: 10.1021/bi010085w. [DOI] [PubMed] [Google Scholar]
  3. Demeler B., Saber H., Hansen J. C. Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J. 1997 Jan;72(1):397–407. doi: 10.1016/S0006-3495(97)78680-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hatters D. M., Wilson L., Atcliffe B. W., Mulhern T. D., Guzzo-Pernell N., Howlett G. J. Sedimentation analysis of novel DNA structures formed by homo-oligonucleotides. Biophys J. 2001 Jul;81(1):371–381. doi: 10.1016/S0006-3495(01)75706-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kar S. R., Kingsbury J. S., Lewis M. S., Laue T. M., Schuck P. Analysis of transport experiments using pseudo-absorbance data. Anal Biochem. 2000 Oct 1;285(1):135–142. doi: 10.1006/abio.2000.4748. [DOI] [PubMed] [Google Scholar]
  6. MacPhee C. E., Chan R. Y., Sawyer W. H., Stafford W. F., Howlett G. J. Interaction of lipoprotein lipase with homogeneous lipid emulsions. J Lipid Res. 1997 Aug;38(8):1649–1659. [PubMed] [Google Scholar]
  7. Murphy RM. Static and dynamic light scattering of biological macromolecules: what can we learn? Curr Opin Biotechnol. 1997 Feb 1;8(1):25–30. doi: 10.1016/s0958-1669(97)80153-x. [DOI] [PubMed] [Google Scholar]
  8. Newcomb W. W., Homa F. L., Thomsen D. R., Trus B. L., Cheng N., Steven A., Booy F., Brown J. C. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol. 1999 May;73(5):4239–4250. doi: 10.1128/jvi.73.5.4239-4250.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Perugini M. A., Schuck P., Howlett G. J. Self-association of human apolipoprotein E3 and E4 in the presence and absence of phospholipid. J Biol Chem. 2000 Nov 24;275(47):36758–36765. doi: 10.1074/jbc.M005565200. [DOI] [PubMed] [Google Scholar]
  10. Philo J. S. A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem. 2000 Mar 15;279(2):151–163. doi: 10.1006/abio.2000.4480. [DOI] [PubMed] [Google Scholar]
  11. Philo J. S. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J. 1997 Jan;72(1):435–444. doi: 10.1016/S0006-3495(97)78684-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schuck P., Demeler B. Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J. 1999 Apr;76(4):2288–2296. doi: 10.1016/S0006-3495(99)77384-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schuck P., MacPhee C. E., Howlett G. J. Determination of sedimentation coefficients for small peptides. Biophys J. 1998 Jan;74(1):466–474. doi: 10.1016/S0006-3495(98)77804-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schuck P., Rossmanith P. Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers. 2000 Oct 15;54(5):328–341. doi: 10.1002/1097-0282(20001015)54:5<328::AID-BIP40>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  15. Schuck P. Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J. 1998 Sep;75(3):1503–1512. doi: 10.1016/S0006-3495(98)74069-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000 Mar;78(3):1606–1619. doi: 10.1016/S0006-3495(00)76713-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stafford W. F., 3rd Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem. 1992 Jun;203(2):295–301. doi: 10.1016/0003-2697(92)90316-y. [DOI] [PubMed] [Google Scholar]
  18. Wiff D. R., Gehatia M. T. Inferring a molecular weight distribution, an ill-posed problem; and establishing the molecular weight scale using magnetic float techniques. Biophys Chem. 1976 Jul;5(1-2):199–206. doi: 10.1016/0301-4622(76)80035-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES