Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2190–2202. doi: 10.1016/S0006-3495(01)75867-5

Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: a molecular simulation study.

T Róg 1, M Pasenkiewicz-Gierula 1
PMCID: PMC1301691  PMID: 11566790

Abstract

A 15-ns molecular dynamics (MD) simulation of the fully hydrated dimyristoylphosphatidylcholine-cholesterol (DMPC-Chol) bilayer in the liquid-crystalline state was carried out to investigate the effect of Chol on the hydrocarbon chain region of the bilayer. The last 8-ns fragment of the generated trajectory was used for analyses. As a reference system, a pure DMPC bilayer (M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, 1999, Biophys. J. 76:1228-1240) simulated for 14 ns was used. The study shows that a Chol-induced increase of the bulk molecular order parameter along both beta- and gamma-chain is mainly caused by a decrease of the average tilt of the chains, because the bulk average number of gauche rotamers/myristoyl chain is not significantly changed by Chol. Nevertheless, for DMPCs located near Chol molecules both the number of gauche rotamers/chain and the chain tilt are decreased. The magnitude of the Chol effect on the PC alkyl chains depends, in addition to the PC-Chol distance, on the side of the Chol molecule (alpha- or beta-face) that the chains are in contact with. This study provides some new insight into the properties of the coexistence region of the partial phase diagram for DMPC-Chol bilayers.

Full Text

The Full Text of this article is available as a PDF (892.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittman R., Clejan S., Lund-Katz S., Phillips M. C. Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements. Biochim Biophys Acta. 1984 May 16;772(2):117–126. doi: 10.1016/0005-2736(84)90034-8. [DOI] [PubMed] [Google Scholar]
  2. Bittman R. Has nature designed the cholesterol side chain for optimal interaction with phospholipids? Subcell Biochem. 1997;28:145–171. doi: 10.1007/978-1-4615-5901-6_6. [DOI] [PubMed] [Google Scholar]
  3. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  4. Dahl C. E. Effect of sterol structure on acyl chain ordering in phosphatidylcholine vesicles: a deuterium nuclear magnetic resonance and electron spin resonance study. Biochemistry. 1981 Dec 8;20(25):7158–7161. doi: 10.1021/bi00528a016. [DOI] [PubMed] [Google Scholar]
  5. Edholm O., Nyberg A. M. Cholesterol in model membranes. A molecular dynamics simulation. Biophys J. 1992 Oct;63(4):1081–1089. doi: 10.1016/S0006-3495(92)81678-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egberts E., Marrink S. J., Berendsen H. J. Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J. 1994;22(6):423–436. doi: 10.1007/BF00180163. [DOI] [PubMed] [Google Scholar]
  7. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  8. Hyslop P. A., Morel B., Sauerheber R. D. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Biochemistry. 1990 Jan 30;29(4):1025–1038. doi: 10.1021/bi00456a027. [DOI] [PubMed] [Google Scholar]
  9. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  10. Kusumi A., Pasenkiewicz-Gierula M. Rotational diffusion of a steroid molecule in phosphatidylcholine membranes: effects of alkyl chain length, unsaturation, and cholesterol as studied by a spin-label method. Biochemistry. 1988 Jun 14;27(12):4407–4415. doi: 10.1021/bi00412a030. [DOI] [PubMed] [Google Scholar]
  11. Kusumi A., Tsuda M., Akino T., Ohnishi S., Terayama Y. Protein-phospholipid-cholesterol interaction in the photolysis of invertebrate rhodopsin. Biochemistry. 1983 Mar 1;22(5):1165–1170. doi: 10.1021/bi00274a027. [DOI] [PubMed] [Google Scholar]
  12. Léonard A., Dufourc E. J. Interactions of cholesterol with the membrane lipid matrix. A solid state NMR approach. Biochimie. 1991 Oct;73(10):1295–1302. doi: 10.1016/0300-9084(91)90092-f. [DOI] [PubMed] [Google Scholar]
  13. Marsh D., Smith I. O. Interacting spin labels as probes of molecular separation within phospholipid bilayers. Biochem Biophys Res Commun. 1972 Nov 15;49(4):916–922. doi: 10.1016/0006-291x(72)90299-9. [DOI] [PubMed] [Google Scholar]
  14. Mouritsen O. G., Jørgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994 Sep 6;73(1-2):3–25. doi: 10.1016/0009-3084(94)90171-6. [DOI] [PubMed] [Google Scholar]
  15. Murari R., Murari M. P., Baumann W. J. Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR. Biochemistry. 1986 Mar 11;25(5):1062–1067. doi: 10.1021/bi00353a017. [DOI] [PubMed] [Google Scholar]
  16. Murzyn K., Róg T., Jezierski G., Takaoka Y., Pasenkiewicz-Gierula M. Effects of phospholipid unsaturation on the membrane/water interface: a molecular simulation study. Biophys J. 2001 Jul;81(1):170–183. doi: 10.1016/S0006-3495(01)75689-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oldfield E., Meadows M., Rice D., Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry. 1978 Jul 11;17(14):2727–2740. doi: 10.1021/bi00607a006. [DOI] [PubMed] [Google Scholar]
  18. Pasenkiewicz-Gierula M., Murzyn K., Róg T., Czaplewski C. Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochim Pol. 2000;47(3):601–611. [PubMed] [Google Scholar]
  19. Pasenkiewicz-Gierula M., Róg T. Conformations, orientations and time scales characterising dimyristoylphosphatidylcholine bilayer membrane. Molecular dynamics simulation studies. Acta Biochim Pol. 1997;44(3):607–624. [PubMed] [Google Scholar]
  20. Pasenkiewicz-Gierula M., Róg T., Kitamura K., Kusumi A. Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. Biophys J. 2000 Mar;78(3):1376–1389. doi: 10.1016/S0006-3495(00)76691-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pasenkiewicz-Gierula M., Subczynski W. K., Kusumi A. Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. Biochemistry. 1990 May 1;29(17):4059–4069. doi: 10.1021/bi00469a006. [DOI] [PubMed] [Google Scholar]
  22. Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Biophys J. 1999 Mar;76(3):1228–1240. doi: 10.1016/S0006-3495(99)77286-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Recktenwald D. J., McConnell H. M. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1981 Jul 21;20(15):4505–4510. doi: 10.1021/bi00518a042. [DOI] [PubMed] [Google Scholar]
  24. Robinson A. J., Richards W. G., Thomas P. J., Hann M. M. Behavior of cholesterol and its effect on head group and chain conformations in lipid bilayers: a molecular dynamics study. Biophys J. 1995 Jan;68(1):164–170. doi: 10.1016/S0006-3495(95)80171-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Róg T., Pasenkiewicz-Gierula M. Cholesterol effects on the phospholipid condensation and packing in the bilayer: a molecular simulation study. FEBS Lett. 2001 Jul 27;502(1-2):68–71. doi: 10.1016/s0014-5793(01)02668-0. [DOI] [PubMed] [Google Scholar]
  26. Sankaram M. B., Thompson T. E. Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry. 1990 Nov 27;29(47):10676–10684. doi: 10.1021/bi00499a015. [DOI] [PubMed] [Google Scholar]
  27. Scott H. L., Kalaskar S. Lipid chains and cholesterol in model membranes: a Monte Carlo Study. Biochemistry. 1989 May 2;28(9):3687–3691. doi: 10.1021/bi00435a010. [DOI] [PubMed] [Google Scholar]
  28. Scott H. L. Lipid-cholesterol interactions. Monte Carlo simulations and theory. Biophys J. 1991 Feb;59(2):445–455. doi: 10.1016/S0006-3495(91)82238-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  30. Smaby J. M., Momsen M. M., Brockman H. L., Brown R. E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys J. 1997 Sep;73(3):1492–1505. doi: 10.1016/S0006-3495(97)78181-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smondyrev A. M., Berkowitz M. L. Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. Biophys J. 1999 Oct;77(4):2075–2089. doi: 10.1016/S0006-3495(99)77049-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Subczynski W. K., Hyde J. S., Kusumi A. Oxygen permeability of phosphatidylcholine--cholesterol membranes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4474–4478. doi: 10.1073/pnas.86.12.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Subczynski W. K., Wisniewska A., Yin J. J., Hyde J. S., Kusumi A. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 1994 Jun 21;33(24):7670–7681. doi: 10.1021/bi00190a022. [DOI] [PubMed] [Google Scholar]
  34. Tu K., Klein M. L., Tobias D. J. Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys J. 1998 Nov;75(5):2147–2156. doi: 10.1016/S0006-3495(98)77657-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Urbina J. A., Moreno B., Arnold W., Taron C. H., Orlean P., Oldfield E. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems. Biophys J. 1998 Sep;75(3):1372–1383. doi: 10.1016/S0006-3495(98)74055-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Urbina J. A., Pekerar S., Le H. B., Patterson J., Montez B., Oldfield E. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Biochim Biophys Acta. 1995 Sep 13;1238(2):163–176. doi: 10.1016/0005-2736(95)00117-l. [DOI] [PubMed] [Google Scholar]
  37. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
  38. Yeagle P. L. Lanosterol and cholesterol have different effects on phospholipid acyl chain ordering. Biochim Biophys Acta. 1985 Apr 26;815(1):33–36. doi: 10.1016/0005-2736(85)90470-5. [DOI] [PubMed] [Google Scholar]
  39. el-Sayed M. Y., Guion T. A., Fayer M. D. Effect of cholesterol on viscoelastic properties of dipalmitoylphosphatidylcholine multibilayers as measured by a laser-induced ultrasonic probe. Biochemistry. 1986 Aug 26;25(17):4825–4832. doi: 10.1021/bi00365a016. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES