Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 1;359(Pt 3):707–714. doi: 10.1042/0264-6021:3590707

Human acyl-CoA:diacylglycerol acyltransferase is a tetrameric protein.

D Cheng 1, R L Meegalla 1, B He 1, D A Cromley 1, J T Billheimer 1, P R Young 1
PMCID: PMC1222193  PMID: 11672446

Abstract

Acyl-CoA:diacylglycerol acyltransferase (DGAT) is an integral membrane enzyme that catalyses the last step of triacylglycerol synthesis from diacylglycerol and acyl-CoA. Here we provide experimental evidence that DGAT is a homotetramer. Although the predicted molecular mass of human DGAT protein is 55 kDa, CHAPS-solubilized recombinant human DGAT was eluted in fractions over 150 kDa on gel-filtration chromatography. Cross-linking of recombinant DGAT in membranes with disuccinimidyl suberate yielded bands corresponding to the dimer (108 kDa) and the tetramer (214 kDa) in SDS/PAGE. Finally, when two differently epitope-tagged forms of DGAT were co-transfected into mammalian cells, they could be co-immunoprecipitated. From a human adipose tissue cDNA library we cloned a cDNA encoding a novel splice variant of DGAT (designated DGATsv) that contained a 77 nt insert of unspliced intron with an in-frame stop codon. This resulted in a truncated form of DGAT that terminated at Arg-387, deleting 101 residues from the C-terminus containing the putative active site. DGATsv was enzymically inactive when transfected in HEK-293E cells but was still able to form dimer and tetramer on cross-linking, indicating that the ability to form tetramers resides in the N-terminal region. When co-expressed in HEK-293E cells, DGATsv did not inhibit the activity of full-length DGAT, suggesting that the subunits of DGAT catalyse triacylglycerol synthesis independently.

Full Text

The Full Text of this article is available as a PDF (339.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
  2. Billheimer J. T., Cromley D. A., Kempner E. S. The functional size of acyl-coenzyme A (CoA):cholesterol acyltransferase and acyl-CoA hydrolase as determined by radiation inactivation. J Biol Chem. 1990 May 25;265(15):8632–8635. [PubMed] [Google Scholar]
  3. Buhman K. F., Accad M., Farese R. V. Mammalian acyl-CoA:cholesterol acyltransferases. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):142–154. doi: 10.1016/s1388-1981(00)00144-x. [DOI] [PubMed] [Google Scholar]
  4. Cases S., Smith S. J., Zheng Y. W., Myers H. M., Lear S. R., Sande E., Novak S., Collins C., Welch C. B., Lusis A. J. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13018–13023. doi: 10.1073/pnas.95.22.13018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang C. C., Huh H. Y., Cadigan K. M., Chang T. Y. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem. 1993 Oct 5;268(28):20747–20755. [PubMed] [Google Scholar]
  6. Chang C. C., Lee C. Y., Chang E. T., Cruz J. C., Levesque M. C., Chang T. Y. Recombinant acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J Biol Chem. 1998 Dec 25;273(52):35132–35141. doi: 10.1074/jbc.273.52.35132. [DOI] [PubMed] [Google Scholar]
  7. Chang T. Y., Chang C. C., Cheng D. Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem. 1997;66:613–638. doi: 10.1146/annurev.biochem.66.1.613. [DOI] [PubMed] [Google Scholar]
  8. Coleman R. A., Lewin T. M., Muoio D. M. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr. 2000;20:77–103. doi: 10.1146/annurev.nutr.20.1.77. [DOI] [PubMed] [Google Scholar]
  9. Erickson S. K., Lear S. R., McCreery M. J. Functional sizes of hepatic enzymes of cholesteryl ester metabolism determined by radiation inactivation. J Lipid Res. 1994 May;35(5):763–769. [PubMed] [Google Scholar]
  10. Farese R. V., Jr, Cases S., Smith S. J. Triglyceride synthesis: insights from the cloning of diacylglycerol acyltransferase. Curr Opin Lipidol. 2000 Jun;11(3):229–234. doi: 10.1097/00041433-200006000-00002. [DOI] [PubMed] [Google Scholar]
  11. Holmberg J., Clarke D. L., Frisén J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature. 2000 Nov 9;408(6809):203–206. doi: 10.1038/35041577. [DOI] [PubMed] [Google Scholar]
  12. KENNEDY E. P. Biosynthesis of complex lipids. Fed Proc. 1961 Dec;20:934–940. [PubMed] [Google Scholar]
  13. Kahn C. R. Triglycerides and toggling the tummy. Nat Genet. 2000 May;25(1):6–7. doi: 10.1038/75610. [DOI] [PubMed] [Google Scholar]
  14. Lehner R., Kuksis A. Triacylglycerol synthesis by purified triacylglycerol synthetase of rat intestinal mucosa. Role of acyl-CoA acyltransferase. J Biol Chem. 1995 Jun 9;270(23):13630–13636. doi: 10.1074/jbc.270.23.13630. [DOI] [PubMed] [Google Scholar]
  15. Oelkers P., Behari A., Cromley D., Billheimer J. T., Sturley S. L. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem. 1998 Oct 9;273(41):26765–26771. doi: 10.1074/jbc.273.41.26765. [DOI] [PubMed] [Google Scholar]
  16. Oelkers P., Tinkelenberg A., Erdeniz N., Cromley D., Billheimer J. T., Sturley S. L. A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem. 2000 May 26;275(21):15609–15612. doi: 10.1074/jbc.C000144200. [DOI] [PubMed] [Google Scholar]
  17. Rawson R. B., DeBose-Boyd R., Goldstein J. L., Brown M. S. Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem. 1999 Oct 1;274(40):28549–28556. doi: 10.1074/jbc.274.40.28549. [DOI] [PubMed] [Google Scholar]
  18. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  19. Smith S. J., Cases S., Jensen D. R., Chen H. C., Sande E., Tow B., Sanan D. A., Raber J., Eckel R. H., Farese R. V., Jr Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet. 2000 May;25(1):87–90. doi: 10.1038/75651. [DOI] [PubMed] [Google Scholar]
  20. Yu C., Chen J., Lin S., Liu J., Chang C. C., Chang T. Y. Human acyl-CoA:cholesterol acyltransferase-1 is a homotetrameric enzyme in intact cells and in vitro. J Biol Chem. 1999 Dec 17;274(51):36139–36145. doi: 10.1074/jbc.274.51.36139. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES