Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):929–936.

The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo.

A Gray 1, J Van Der Kaay 1, C P Downes 1
PMCID: PMC1220718  PMID: 10585883

Abstract

We have tested the binding specificities of the pleckstrin homology (PH) domains of protein kinase B (PKB) and GRP1 (general receptor for phosphoinositides-1), expressed as green fluorescent protein (GFP) fusion proteins [PH(PKB)GFP and PH(GRP1)GFP respectively] in HEK 293 cells and Swiss 3T3 cells, using confocal microscopy. Stimulation of HEK 293 cells with insulin caused a small, but sustained, increase in PtdIns(3,4,5)P(3) levels, detected using a radioligand displacement assay, which was mirrored by the translocation of PH(PKB)GFP and PH(GRP1)GFP from the cytosol to the plasma membrane of live, transfected cells. Similar results were obtained using Swiss 3T3 cells stimulated with platelet-derived growth factor (PDGF) and expressing either PH(PKB)GFP or PH(GRP1)GFP. Biochemical analyses confirmed the accumulation of both PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) in response to PDGF, but only the latter was present at increased levels in Swiss 3T3 cells 30 min after an oxidative stress (1 mM H(2)O(2)). Concomitantly, only PH(PKB)GFP, and not PH(GRP1)GFP, was localized at plasma membranes after 30 min of treatment with H(2)O(2). The fusion proteins appear accurately to report the spatial and temporal distribution of PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) in intact cells. These results establish the lipid selectivity of these PH domains in vivo, and further emphasize the overlapping, but distinct, second messenger roles of PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).

Full Text

The Full Text of this article is available as a PDF (283.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. E., Coadwell J., Stephens L. R., Hawkins P. T. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol. 1998 Jun 4;8(12):684–691. doi: 10.1016/s0960-9822(98)70274-x. [DOI] [PubMed] [Google Scholar]
  3. Andjelković M., Alessi D. R., Meier R., Fernandez A., Lamb N. J., Frech M., Cron P., Cohen P., Lucocq J. M., Hemmings B. A. Role of translocation in the activation and function of protein kinase B. J Biol Chem. 1997 Dec 12;272(50):31515–31524. doi: 10.1074/jbc.272.50.31515. [DOI] [PubMed] [Google Scholar]
  4. Balendran A., Casamayor A., Deak M., Paterson A., Gaffney P., Currie R., Downes C. P., Alessi D. R. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol. 1999 Apr 22;9(8):393–404. doi: 10.1016/s0960-9822(99)80186-9. [DOI] [PubMed] [Google Scholar]
  5. Banfić H., Downes C. P., Rittenhouse S. E. Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 8;273(19):11630–11637. doi: 10.1074/jbc.273.19.11630. [DOI] [PubMed] [Google Scholar]
  6. Banfić H., Tang X., Batty I. H., Downes C. P., Chen C., Rittenhouse S. E. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem. 1998 Jan 2;273(1):13–16. doi: 10.1074/jbc.273.1.13. [DOI] [PubMed] [Google Scholar]
  7. Batty I. H., Downes C. P. Thrombin receptors modulate insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation in 1321N1 astrocytoma cells. Biochem J. 1996 Jul 15;317(Pt 2):347–351. doi: 10.1042/bj3170347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark S. F., Martin S., Carozzi A. J., Hill M. M., James D. E. Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: potential involvement of a membrane skeleton. J Cell Biol. 1998 Mar 9;140(5):1211–1225. doi: 10.1083/jcb.140.5.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke J. F., Young P. W., Yonezawa K., Kasuga M., Holman G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J. 1994 Jun 15;300(Pt 3):631–635. doi: 10.1042/bj3000631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Currie R. A., Walker K. S., Gray A., Deak M., Casamayor A., Downes C. P., Cohen P., Alessi D. R., Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999 Feb 1;337(Pt 3):575–583. [PMC free article] [PubMed] [Google Scholar]
  11. Falasca M., Logan S. K., Lehto V. P., Baccante G., Lemmon M. A., Schlessinger J. Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 1998 Jan 15;17(2):414–422. doi: 10.1093/emboj/17.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Han J., Luby-Phelps K., Das B., Shu X., Xia Y., Mosteller R. D., Krishna U. M., Falck J. R., White M. A., Broek D. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 1998 Jan 23;279(5350):558–560. doi: 10.1126/science.279.5350.558. [DOI] [PubMed] [Google Scholar]
  13. Klarlund J. K., Guilherme A., Holik J. J., Virbasius J. V., Chawla A., Czech M. P. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science. 1997 Mar 28;275(5308):1927–1930. doi: 10.1126/science.275.5308.1927. [DOI] [PubMed] [Google Scholar]
  14. Klarlund J. K., Rameh L. E., Cantley L. C., Buxton J. M., Holik J. J., Sakelis C., Patki V., Corvera S., Czech M. P. Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 Jan 23;273(4):1859–1862. doi: 10.1074/jbc.273.4.1859. [DOI] [PubMed] [Google Scholar]
  15. Kummer J. L., Calera M. R., Pilch P. F. Separation of IRS-1 and PI3-kinase from GLUT4 vesicles in rat skeletal muscle. Biochem Biophys Res Commun. 1998 May 8;246(1):282–286. doi: 10.1006/bbrc.1998.8599. [DOI] [PubMed] [Google Scholar]
  16. McDowell H. E., Walker T., Hajduch E., Christie G., Batty I. H., Downes C. P., Hundal H. S. Inositol phospholipid 3-kinase is activated by cellular stress but is not required for the stress-induced activation of glucose transport in L6 rat skeletal muscle cells. Eur J Biochem. 1997 Jul 1;247(1):306–313. doi: 10.1111/j.1432-1033.1997.00306.x. [DOI] [PubMed] [Google Scholar]
  17. Meier R., Alessi D. R., Cron P., Andjelković M., Hemmings B. A. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem. 1997 Nov 28;272(48):30491–30497. doi: 10.1074/jbc.272.48.30491. [DOI] [PubMed] [Google Scholar]
  18. Nimnual A. S., Yatsula B. A., Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 1998 Jan 23;279(5350):560–563. doi: 10.1126/science.279.5350.560. [DOI] [PubMed] [Google Scholar]
  19. Rameh L. E., Arvidsson A. k., Carraway K. L., 3rd, Couvillon A. D., Rathbun G., Crompton A., VanRenterghem B., Czech M. P., Ravichandran K. S., Burakoff S. J. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem. 1997 Aug 29;272(35):22059–22066. doi: 10.1074/jbc.272.35.22059. [DOI] [PubMed] [Google Scholar]
  20. Stauffer T. P., Ahn S., Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol. 1998 Mar 12;8(6):343–346. doi: 10.1016/s0960-9822(98)70135-6. [DOI] [PubMed] [Google Scholar]
  21. Toker A., Cantley L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997 Jun 12;387(6634):673–676. doi: 10.1038/42648. [DOI] [PubMed] [Google Scholar]
  22. Vanhaesebroeck B., Leevers S. J., Panayotou G., Waterfield M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997 Jul;22(7):267–272. doi: 10.1016/s0968-0004(97)01061-x. [DOI] [PubMed] [Google Scholar]
  23. Venkateswarlu K., Gunn-Moore F., Oatey P. B., Tavaré J. M., Cullen P. J. Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem J. 1998 Oct 1;335(Pt 1):139–146. doi: 10.1042/bj3350139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Venkateswarlu K., Oatey P. B., Tavaré J. M., Cullen P. J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol. 1998 Apr 9;8(8):463–466. doi: 10.1016/s0960-9822(98)70181-2. [DOI] [PubMed] [Google Scholar]
  25. Várnai P., Rother K. I., Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem. 1999 Apr 16;274(16):10983–10989. doi: 10.1074/jbc.274.16.10983. [DOI] [PubMed] [Google Scholar]
  26. Walker K. S., Deak M., Paterson A., Hudson K., Cohen P., Alessi D. R. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J. 1998 Apr 1;331(Pt 1):299–308. doi: 10.1042/bj3310299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Watton S. J., Downward J. Akt/PKB localisation and 3' phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr Biol. 1999 Apr 22;9(8):433–436. doi: 10.1016/s0960-9822(99)80192-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES