Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):223–228. doi: 10.1042/bj3220223

Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro.

M E Young 1, G K Radda 1, B Leighton 1
PMCID: PMC1218180  PMID: 9078265

Abstract

1. The effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on the rates of glucose transport and utilization and its interaction with insulin were investigated in rat soleus muscle in vitro. SNP stimulated the rate of 2-deoxyglucose transport and insulin-mediated (100 mu-units/ml) rates of both net and [14C]lactate release and the rate of glucose oxidation. The effects of SNP were independent of the concentration-dependent effects of insulin on glucose metabolism. 2. SNP stimulated the insulin-stimulated rates of net and [14C]lactate release and glucose oxidation in a concentration-dependent manner. The rate of [14C]lactate release was also stimulated by another NO donor, (Z)-1-(N-[aminopropyl]-N-[4-(3-aminopropylammonio) butyl]-amino)-diazen-l-ium-1,2-diolate (spermine NONOate). 3. SNP at 5, 10 and 15 mM inhibited the insulin-stimulated rate of glycogen synthesis and this rate was further decreased at 20 and 25 mM SNP. SNP did not affect the rate of glycogen synthesis in the absence of insulin. 4. Haemoglobin, which is a NO scavenger, prevented the stimulation of the rates of [14C]lactate release by SNP or spermine NONOate. 5. The cGMP content was increased maximally (by approx. 80-fold) within 15 min by SNP (15 mM). The cGMP content, raised maximally by SNP, was significantly decreased by the guanylate cyclase inhibitor LY-83583 (10 microM). The cGMP analogue 8-bromo-cGMP (100 microM) significantly increased the rate of net lactate release. 6. LY-83583 significantly inhibited SNP-stimulated rates of 2-deoxyglucose transport, [4C]lactate release and glucose oxidation. Methylene Blue (another guanylate cyclase inhibitor) also inhibited SNP-stimulated rates of [14C]lactate release. 7. The results suggest that in rat skeletal muscle: (a) nitric oxide (from SNP or spermine NONOate) increases the rate of glucose transport and metabolism, an effect independent of insulin; (b) SNP inhibits insulin-mediated rates of glycogen synthesis; (c) SNP stimulates cGMP formation, which mediates, at least partly, the effects on glucose metabolism; (d) nitric oxide-mediated stimulation of glucose utilization might occur in fibre contraction. The implications of the effects of NO on glucose metabolism are discussed.

Full Text

The Full Text of this article is available as a PDF (272.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azevedo J. L., Jr, Carey J. O., Pories W. J., Morris P. G., Dohm G. L. Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes. 1995 Jun;44(6):695–698. doi: 10.2337/diab.44.6.695. [DOI] [PubMed] [Google Scholar]
  2. Balon T. W., Nadler J. L. Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol (1985) 1994 Dec;77(6):2519–2521. doi: 10.1152/jappl.1994.77.6.2519. [DOI] [PubMed] [Google Scholar]
  3. Bates T. E., Loesch A., Burnstock G., Clark J. B. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun. 1996 Jan 5;218(1):40–44. doi: 10.1006/bbrc.1996.0008. [DOI] [PubMed] [Google Scholar]
  4. Brenman J. E., Chao D. S., Xia H., Aldape K., Bredt D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 1995 Sep 8;82(5):743–752. doi: 10.1016/0092-8674(95)90471-9. [DOI] [PubMed] [Google Scholar]
  5. Brown G. C., Bolaños J. P., Heales S. J., Clark J. B. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett. 1995 Jul 7;193(3):201–204. doi: 10.1016/0304-3940(95)11703-y. [DOI] [PubMed] [Google Scholar]
  6. Brown G. C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995 Aug 7;369(2-3):136–139. doi: 10.1016/0014-5793(95)00763-y. [DOI] [PubMed] [Google Scholar]
  7. Challiss R. A., Lozeman F. J., Leighton B., Newsholme E. A. Effects of the beta-adrenoceptor agonist isoprenaline on insulin-sensitivity in soleus muscle of the rat. Biochem J. 1986 Jan 15;233(2):377–381. doi: 10.1042/bj2330377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammerstedt R. H. A rapid method for isolating glucose metabolites involved in substrate cycling. Anal Biochem. 1980 Dec;109(2):443–448. doi: 10.1016/0003-2697(80)90675-2. [DOI] [PubMed] [Google Scholar]
  9. Haugaard N., Haugaard E. S. Stimulation of glucose utilization by thioctic acid in rat diaphragm incubated in vitro. Biochim Biophys Acta. 1970 Dec 29;222(3):583–586. doi: 10.1016/0304-4165(70)90183-2. [DOI] [PubMed] [Google Scholar]
  10. Ignarro L. J. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989 Jan;3(1):31–36. doi: 10.1096/fasebj.3.1.2642868. [DOI] [PubMed] [Google Scholar]
  11. Kobzik L., Reid M. B., Bredt D. S., Stamler J. S. Nitric oxide in skeletal muscle. Nature. 1994 Dec 8;372(6506):546–548. doi: 10.1038/372546a0. [DOI] [PubMed] [Google Scholar]
  12. Kobzik L., Stringer B., Balligand J. L., Reid M. B., Stamler J. S. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun. 1995 Jun 15;211(2):375–381. doi: 10.1006/bbrc.1995.1824. [DOI] [PubMed] [Google Scholar]
  13. Lee A. D., Hansen P. A., Holloszy J. O. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 1995 Mar 13;361(1):51–54. doi: 10.1016/0014-5793(95)00147-2. [DOI] [PubMed] [Google Scholar]
  14. Lee K. H., Baek M. Y., Moon K. Y., Song W. K., Chung C. H., Ha D. B., Kang M. S. Nitric oxide as a messenger molecule for myoblast fusion. J Biol Chem. 1994 May 20;269(20):14371–14374. [PubMed] [Google Scholar]
  15. Leighton B., Budohoski L., Lozeman F. J., Challiss R. A., Newsholme E. A. The effect of prostaglandins E1, E2 and F2 alpha and indomethacin on the sensitivity of glycolysis and glycogen synthesis to insulin in stripped soleus muscles of the rat. Biochem J. 1985 Apr 1;227(1):337–340. doi: 10.1042/bj2270337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leighton B., Cooper G. J. The role of amylin in the insulin resistance of non-insulin-dependent diabetes mellitus. Trends Biochem Sci. 1990 Aug;15(8):295–299. doi: 10.1016/0968-0004(90)90015-4. [DOI] [PubMed] [Google Scholar]
  17. Leighton B., Kowalchuk J. M., Challiss R. A., Newsholme E. A. Circadian rhythm in sensitivity of glucose metabolism to insulin in rat soleus muscle. Am J Physiol. 1988 Jul;255(1 Pt 1):E41–E45. doi: 10.1152/ajpendo.1988.255.1.E41. [DOI] [PubMed] [Google Scholar]
  18. McDonald L. J., Murad F. Nitric oxide and cyclic GMP signaling. Proc Soc Exp Biol Med. 1996 Jan;211(1):1–6. doi: 10.3181/00379727-211-43950a. [DOI] [PubMed] [Google Scholar]
  19. Mülsch A., Busse R., Liebau S., Förstermann U. LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol Exp Ther. 1988 Oct;247(1):283–288. [PubMed] [Google Scholar]
  20. Nakane M., Schmidt H. H., Pollock J. S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
  21. Nesher R., Karl I. E., Kipnis D. M. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol. 1985 Sep;249(3 Pt 1):C226–C232. doi: 10.1152/ajpcell.1985.249.3.C226. [DOI] [PubMed] [Google Scholar]
  22. Nesher R., Karl I. E., Kipnis D. M. Epitrochlearis muscle. II. Metabolic effects of contraction and catecholamines. Am J Physiol. 1980 Dec;239(6):E461–E467. doi: 10.1152/ajpendo.1980.239.6.E461. [DOI] [PubMed] [Google Scholar]
  23. Pinkett M. O., Perlman R. L. Stimulation of sugar transport in rat diaphragm by 8-bromoguanosine 3', 5'-monophosphate. Biochim Biophys Acta. 1975 Aug 13;399(2):473–477. doi: 10.1016/0304-4165(75)90277-9. [DOI] [PubMed] [Google Scholar]
  24. Reid M. B., Haack K. E., Franchek K. M., Valberg P. A., Kobzik L., West M. S. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol (1985) 1992 Nov;73(5):1797–1804. doi: 10.1152/jappl.1992.73.5.1797. [DOI] [PubMed] [Google Scholar]
  25. Smith R. P., Kruszyna H. Toxicology of some inorganic antihypertensive anions. Fed Proc. 1976 Jan;35(1):69–72. [PubMed] [Google Scholar]
  26. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  27. Takakura K., Goto Y., Muramatsu I. Nitric oxide synthase induction and relaxation in lipopolysaccharide-treated gastric fundus muscle of rats. Life Sci. 1996;58(1):9–17. doi: 10.1016/0024-3205(95)02250-3. [DOI] [PubMed] [Google Scholar]
  28. Tsuura Y., Ishida H., Hayashi S., Sakamoto K., Horie M., Seino Y. Nitric oxide opens ATP-sensitive K+ channels through suppression of phosphofructokinase activity and inhibits glucose-induced insulin release in pancreatic beta cells. J Gen Physiol. 1994 Dec;104(6):1079–1098. doi: 10.1085/jgp.104.6.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams G., Brown T., Becker L., Prager M., Giroir B. P. Cytokine-induced expression of nitric oxide synthase in C2C12 skeletal muscle myocytes. Am J Physiol. 1994 Oct;267(4 Pt 2):R1020–R1025. doi: 10.1152/ajpregu.1994.267.4.R1020. [DOI] [PubMed] [Google Scholar]
  30. Wink D. A., Hanbauer I., Krishna M. C., DeGraff W., Gamson J., Mitchell J. B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813–9817. doi: 10.1073/pnas.90.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yeh J. I., Gulve E. A., Rameh L., Birnbaum M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995 Feb 3;270(5):2107–2111. doi: 10.1074/jbc.270.5.2107. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES