Skip to main content
Genetics logoLink to Genetics
. 1997 Dec;147(4):1723–1741. doi: 10.1093/genetics/147.4.1723

P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Mutations Affecting Embryonic Pns Development

A Salzberg 1, S N Prokopenko 1, Y He 1, P Tsai 1, M Pal 1, P Maroy 1, D M Glover 1, P Deak 1, H J Bellen 1
PMCID: PMC1208342  PMID: 9409832

Abstract

To identify novel genes and to isolate tagged mutations in known genes that are required for the development of the peripheral nervous system (PNS), we have screened a novel collection of 2460 strains carrying lethal or semilethal P-element insertions on the third chromosome. Monoclonal antibody 22C10 was used as a marker to visualize the embryonic PNS. We identified 109 mutant strains that exhibited reproducible phenotypes in the PNS. Cytological and genetic analyses of these strains indicated that 87 mutations affect previously identified genes: tramtrack (n = 18 alleles), string (n = 15), cyclin A (n = 13), single-minded (n = 13), Delta (n = 9), neuralized (n = 4), pointed (n = 4), extra macrochaetae (n = 4), prospero (n = 3), tartan (n = 2), and pebble (n = 2). In addition, 13 mutations affect genes that we identified recently in a chemical mutagenesis screen designed to isolate similar mutants: hearty (n = 3), dorsotonals (n = 2), pavarotti (n = 2), sanpodo (n = 2), dalmatian (n = 1), missensed (n = 1), senseless (n = 1), and sticky ch1 (n = 1). The remaining nine mutations define seven novel complementation groups. The data presented here demonstrate that this collection of P elements will be useful for the identification and cloning of novel genes on the third chromosome, since >70% of mutations identified in the screen are caused by the insertion of a P element. A comparison between this screen and a chemical mutagenesis screen undertaken earlier highlights the complementarity of the two types of genetic screens.

Full Text

The Full Text of this article is available as a PDF (10.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alton A. K., Fechtel K., Terry A. L., Meikle S. B., Muskavitch M. A. Cytogenetic definition and morphogenetic analysis of Delta, a gene affecting neurogenesis in Drosophila melanogaster. Genetics. 1988 Feb;118(2):235–245. doi: 10.1093/genetics/118.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. G., Perkins G. L., Chittick P., Shrigley R. J., Johnson W. A. drifter, a Drosophila POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline glia. Genes Dev. 1995 Jan 1;9(1):123–137. doi: 10.1101/gad.9.1.123. [DOI] [PubMed] [Google Scholar]
  3. Bellen H. J., Kooyer S., D'Evelyn D., Pearlman J. The Drosophila couch potato protein is expressed in nuclei of peripheral neuronal precursors and shows homology to RNA-binding proteins. Genes Dev. 1992 Nov;6(11):2125–2136. doi: 10.1101/gad.6.11.2125. [DOI] [PubMed] [Google Scholar]
  4. Bhat M. A., Philp A. V., Glover D. M., Bellen H. J. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Cell. 1996 Dec 13;87(6):1103–1114. doi: 10.1016/s0092-8674(00)81804-8. [DOI] [PubMed] [Google Scholar]
  5. Bier E., Jan L. Y., Jan Y. N. rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev. 1990 Feb;4(2):190–203. doi: 10.1101/gad.4.2.190. [DOI] [PubMed] [Google Scholar]
  6. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  7. Biggs J., Tripoulas N., Hersperger E., Dearolf C., Shearn A. Analysis of the lethal interaction between the prune and Killer of prune mutations of Drosophila. Genes Dev. 1988 Oct;2(10):1333–1343. doi: 10.1101/gad.2.10.1333. [DOI] [PubMed] [Google Scholar]
  8. Botas J., Moscoso del Prado J., García-Bellido A. Gene-dose titration analysis in the search of trans-regulatory genes in Drosophila. EMBO J. 1982;1(3):307–310. doi: 10.1002/j.1460-2075.1982.tb01165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boulianne G. L., de la Concha A., Campos-Ortega J. A., Jan L. Y., Jan Y. N. The Drosophila neurogenic gene neuralized encodes a novel protein and is expressed in precursors of larval and adult neurons. EMBO J. 1991 Oct;10(10):2975–2983. doi: 10.1002/j.1460-2075.1991.tb07848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chang Z., Price B. D., Bockheim S., Boedigheimer M. J., Smith R., Laughon A. Molecular and genetic characterization of the Drosophila tartan gene. Dev Biol. 1993 Dec;160(2):315–332. doi: 10.1006/dbio.1993.1310. [DOI] [PubMed] [Google Scholar]
  11. Doe C. Q., Chu-LaGraff Q., Wright D. M., Scott M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell. 1991 May 3;65(3):451–464. doi: 10.1016/0092-8674(91)90463-9. [DOI] [PubMed] [Google Scholar]
  12. Edgar B. A., O'Farrell P. H. Genetic control of cell division patterns in the Drosophila embryo. Cell. 1989 Apr 7;57(1):177–187. doi: 10.1016/0092-8674(89)90183-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eisen J. S. Zebrafish make a big splash. Cell. 1996 Dec 13;87(6):969–977. doi: 10.1016/s0092-8674(00)81792-4. [DOI] [PubMed] [Google Scholar]
  14. Fujita S. C., Zipursky S. L., Benzer S., Ferrús A., Shotwell S. L. Monoclonal antibodies against the Drosophila nervous system. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7929–7933. doi: 10.1073/pnas.79.24.7929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garrell J., Modolell J. The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell. 1990 Apr 6;61(1):39–48. doi: 10.1016/0092-8674(90)90213-x. [DOI] [PubMed] [Google Scholar]
  16. Goodman C. S., Bastiani M. J., Doe C. Q., du Lac S., Helfand S. L., Kuwada J. Y., Thomas J. B. Cell recognition during neuronal development. Science. 1984 Sep 21;225(4668):1271–1279. doi: 10.1126/science.6474176. [DOI] [PubMed] [Google Scholar]
  17. Harrison S. D., Travers A. A. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 1990 Jan;9(1):207–216. doi: 10.1002/j.1460-2075.1990.tb08097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hay B., Jan L. Y., Jan Y. N. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell. 1988 Nov 18;55(4):577–587. doi: 10.1016/0092-8674(88)90216-4. [DOI] [PubMed] [Google Scholar]
  19. Hime G., Saint R. Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila. Development. 1992 Jan;114(1):165–171. doi: 10.1242/dev.114.1.165. [DOI] [PubMed] [Google Scholar]
  20. Kania A., Salzberg A., Bhat M., D'Evelyn D., He Y., Kiss I., Bellen H. J. P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster. Genetics. 1995 Apr;139(4):1663–1678. doi: 10.1093/genetics/139.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karpen G. H., Spradling A. C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. doi: 10.1093/genetics/132.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klämbt C. The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development. 1993 Jan;117(1):163–176. doi: 10.1242/dev.117.1.163. [DOI] [PubMed] [Google Scholar]
  23. Kolodziej P. A., Jan L. Y., Jan Y. N. Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron. 1995 Aug;15(2):273–286. doi: 10.1016/0896-6273(95)90033-0. [DOI] [PubMed] [Google Scholar]
  24. Langer-Safer P. R., Levine M., Ward D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4381–4385. doi: 10.1073/pnas.79.14.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lehner C. F., O'Farrell P. H. Expression and function of Drosophila cyclin A during embryonic cell cycle progression. Cell. 1989 Mar 24;56(6):957–968. doi: 10.1016/0092-8674(89)90629-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martin K. A., Poeck B., Roth H., Ebens A. J., Ballard L. C., Zipursky S. L. Mutations disrupting neuronal connectivity in the Drosophila visual system. Neuron. 1995 Feb;14(2):229–240. doi: 10.1016/0896-6273(95)90281-3. [DOI] [PubMed] [Google Scholar]
  27. Roberts D. B., Evans-Roberts S. The genetic and cytogenetic localization of the three structural genes coding for the major protein of drosophila larval serum. Genetics. 1979 Nov;93(3):663–679. doi: 10.1093/genetics/93.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Salzberg A., Bellen H. J. Invertebrate versus vertebrate neurogenesis: variations on the same theme? Dev Genet. 1996;18(1):1–10. doi: 10.1002/(SICI)1520-6408(1996)18:1<1::AID-DVG1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  29. Thomas J. B., Crews S. T., Goodman C. S. Molecular genetics of the single-minded locus: a gene involved in the development of the Drosophila nervous system. Cell. 1988 Jan 15;52(1):133–141. doi: 10.1016/0092-8674(88)90537-5. [DOI] [PubMed] [Google Scholar]
  30. Török T., Tick G., Alvarado M., Kiss I. P-lacW insertional mutagenesis on the second chromosome of Drosophila melanogaster: isolation of lethals with different overgrowth phenotypes. Genetics. 1993 Sep;135(1):71–80. doi: 10.1093/genetics/135.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Uemura T., Shepherd S., Ackerman L., Jan L. Y., Jan Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell. 1989 Jul 28;58(2):349–360. doi: 10.1016/0092-8674(89)90849-0. [DOI] [PubMed] [Google Scholar]
  32. Vactor D. V., Sink H., Fambrough D., Tsoo R., Goodman C. S. Genes that control neuromuscular specificity in Drosophila. Cell. 1993 Jun 18;73(6):1137–1153. doi: 10.1016/0092-8674(93)90643-5. [DOI] [PubMed] [Google Scholar]
  33. Vaessin H., Grell E., Wolff E., Bier E., Jan L. Y., Jan Y. N. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell. 1991 Nov 29;67(5):941–953. doi: 10.1016/0092-8674(91)90367-8. [DOI] [PubMed] [Google Scholar]
  34. Wilson C., Pearson R. K., Bellen H. J., O'Kane C. J., Grossniklaus U., Gehring W. J. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 1989 Sep;3(9):1301–1313. doi: 10.1101/gad.3.9.1301. [DOI] [PubMed] [Google Scholar]
  35. Zipursky S. L., Venkatesh T. R., Teplow D. B., Benzer S. Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell. 1984 Jan;36(1):15–26. doi: 10.1016/0092-8674(84)90069-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES